Chemistry and isotopic ratios in intermediate-redshift molecular absorbers

Sofia Wallström

KU Leuven

with S. Muller, J. H. Black (OSO, Chalmers University of Technology), E. Roueff, M. Gerin (LERMA, Observatoire de Paris), M. Guelin (IRAM), and R. Le Gal (CfA Harvard)

KU LEU

Chemical enrichment of the Universe

2 Sofia Wallström | Physics and Chemistry of the ISM, Avignon September 2-6 2019

Molecular absorbers

- Intermediate-redshift galaxies lensing more distant quasars
- Molecular absorption undiluted by distance
 - Line strength proportional to the quasar brightness
 - Study rare isotopologues in distant galaxies
- Probe one or more small regions (=size of quasar image) in the absorbing galaxy
- Absorption depth proportional to line opacity
 - Direct measurement of isotopic ratios (for optically thin lines)
- Only a handful of such systems known, two well studied: MA0.89 and MA0.68

KU LEUV

Molecular absorber MA0.89 toward PKS 1830-211

MERLIN 5 GHz (CSIRO)

HST image (Muller et al. 2006)

Molecules in MA0.89

Toward the SW image	
1 atom	$\mathrm{H}^{(d)},\mathrm{C}^{(in)}$
2 atoms	CH ⁽ⁿ⁾ , OH ^(d) , CO ^(bcin) , ¹³ CO ⁽ⁿ⁾ , CS ^(afn) , C ³⁴ S ^(f) , SiO ^(jkmn) , ²⁹ SiO ^(km) , ³⁰ SiO ^(m) , NS ^(k) , SO ^(kmn) , SO ^{+ (k)}
3 atoms	$\underline{\mathbf{NH}}_{2} \stackrel{(n)}{=}, \mathbf{H}_{2} \mathbf{O} \stackrel{(hn)}{=}, \mathbf{H}_{2}^{17} \mathbf{O} \stackrel{(n)}{=}, \mathbf{C}_{2} \mathbf{H} \stackrel{(ekmn)}{=}, \mathbf{H} \mathbf{CN} \stackrel{(aefkmn)}{=}, \mathbf{H}^{13} \mathbf{CN} \stackrel{(efkmn)}{=}, \mathbf{H} \mathbf{C}^{15} \mathbf{N} \stackrel{(fkmn)}{=}, \mathbf{H} \mathbf{N} \mathbf{C} \stackrel{(aefkm)}{=}, \mathbf{H} \mathbf{C} \mathbf{N} \stackrel{(efkmn)}{=}, \mathbf{H} \mathbf{C} \mathbf{C} \mathbf{N} \stackrel{(efkmn)}{=}, \mathbf{H} \mathbf{C} \mathbf{C} \mathbf{N} \stackrel{(efkmn)}{=}, \mathbf{H} \mathbf{C} \mathbf{N} \stackrel{(efkmn)}{=}, \mathbf{H} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$
	$\overline{\mathrm{HN}^{13}}\mathrm{C}^{(efkmn)}, \mathrm{H}^{15}\overline{\mathrm{NC}^{(fkmn)}}, \mathrm{N}_{2}\mathrm{H}^{+ (ak)}, \mathrm{HCO}^{+ (aefkmn)}, \mathrm{H}^{13}\mathrm{CO}^{+ (aefkmn)}, \mathrm{HC}^{18}\mathrm{O}^{+ (fkm)}, \mathrm{HC}^{17}\mathrm{O}^{+ (fkmn)}, \mathrm{HC}^{10}\mathrm{O}^{+ (fkmn)}$
	HCO $^{(kmn)}$, HOC ^{+ (kmn)} , H ₂ S $^{(f)}$, H ₂ ³⁴ S $^{(f)}$, H ₂ Cl ^{+ (n)} , H ₂ ³⁷ Cl ^{+ (n)} , HCS ^{+ (m)} , C ₂ S $^{(k)}$
4 atoms	$NH_3^{(ghn)}, H_2CO^{(cek)}, 1-C_3H^{(k)}, HNCO^{(km)}, HOCO^{+(m)}, H_2CS^{(k)}$
5 atoms	CH ₂ NH ^(kmn) , c-C ₃ H ₂ ^(ekm) , 1-C ₃ H ₂ ^(k) , H ₂ CCN ^(k) , H ₂ CCO ^(k) , C ₄ H ^(k) , HC ₃ N ^(ejkm)
6 atoms	CH ₃ OH ^(kln) , CH ₃ CN ^(km) , NH ₂ CHO ^(m)
7 atoms	CH ₃ NH ₂ ^(<i>km</i>) , CH ₃ C ₂ H ^(<i>km</i>) , CH ₃ CHO ^(<i>k</i>)
Toward the NE image	
1 atom	$\mathrm{H}^{(d)},\mathbf{C}^{(n)}$
2 atoms	$\mathbf{CH}^{(n)}, \mathbf{OH}^{(d)}, \mathbf{CO}^{(n)}$
3 atoms	$\mathbf{H}_{2}\mathbf{O}^{(n)}, \mathbf{C}_{2}\mathbf{H}^{(kn)}, \mathbf{HCN}^{(fkmn)}, \mathbf{HNC}^{(fk)}, \mathbf{HCO}^{+(cfkmn)}, \mathbf{H}_{2}\mathbf{Cl}^{+(n)}$
4 atoms	$\mathbf{NH}_3^{(n)}, \mathbf{H}_2\mathbf{CO}^{(k)}$
5 atoms	$c-C_3H_2^{(k)}$

Muller et al. 2014

Molecular absorber MA0.68 toward B 0218+357

MERLIN/VLA 5 GHz (Biggs et al. 2001)

HST image (York et al. 2005)

Absorption profiles in MA0.68

Wallström et al. 2016

¹³C/¹⁸O vs ¹³C/¹⁵N

9 Sofia Wallström | Physics and Chemistry of the ISM, Avignon September 2-6 2019

Isotopic ratios – measured vs chemical evolution models

Model results from Kobayashi et al. 2011

³⁵Cl/³⁷Cl isotopic ratio

- 35 Cl / 37 Cl ratio in the Sun is 3.13
 - Mainly from supernova nucleosynthesis
- MA0.89 SW & NE show ratios \sim 3 in both H₂Cl⁺ and HCl
 - Same ratio in lines of sight at different galactocentric radii (2 vs. 4 kpc), as well as in gas of low and high molecular fraction
 - No significant metallicity gradient or difference in stellar populations; and ISM well mixed
- MA0.68 has ratio of 2.2 \pm 0.3, the first isotopic ratio to differ between these two galaxies
 - C, N, O, S isotopic ratios the same in both galaxies
 - MA0.68 potentially older (more AGB contribution) or has higher metallicity

KU LEU

Chlorine chemistry

Neufeld & Wolfire 2009

Chlorine chemistry

- Chlorine has fairly simple chemical network, but we lack constraints on e.g. gas composition along line of sight, metallicity, dust...
- Simple analytical model to explore how chlorine chemstry varies with density, UV radiation field (G₀), cosmic ray ionization rate
- Measure $[H_2Cl^+]/[HCl] \sim 1$ in MA0.89 SW and > 17 in MA0.89 NE
 - Reflect higher molecular fraction in MA0.89 SW as traced by HCl
 - Need G₀ > 10
 - Cosmic ray ionization few times higher than Solar neighborhood
 - May be indicative of a higher star formation rate

KU LEUV

- Intermediate redshift molecular absorbers provide a powerful tool to study the ISM in distant galaxies
- MA0.89 and MA0.68 mainly show enrichment by massive stars
 - Only differ in the ³⁵Cl/³⁷Cl isotopic ratio
- Chlorine chemistry implies increased UV radiation field and cosmic ray ionization rate in MA0.89

KU LEUV