Chemistry and isotopic ratios in intermediate-redshift molecular absorbers

Sofia Wallström
KU Leuven

with S. Muller, J. H. Black (OSO, Chalmers University of Technology), E. Roueff, M. Gerin (LERMA, Observatoire de Paris), M. Guelin (IRAM), and R. Le Gal (CfA Harvard)
Chemical enrichment of the Universe

Star formation → Stars → Mass-loss → Supernovae → Star formation
Molecular absorbers

PKS 1830-211
z=2.5

MA0.89
z=0.89
Molecular absorbers

• Intermediate-redshift galaxies lensing more distant quasars
• Molecular absorption undiluted by distance
 • Line strength proportional to the quasar brightness
 • Study rare isotopologues in distant galaxies
• Probe one or more small regions (=size of quasar image) in the absorbing galaxy
• Absorption depth proportional to line opacity
 • Direct measurement of isotopic ratios (for optically thin lines)
• Only a handful of such systems known, two well studied: MA0.89 and MA0.68
Molecular absorber MA0.89 toward PKS 1830-211
Molecules in MA0.89

1 atom	H\(^{(d)}\), C\(^{(in)}\)
2 atoms	CH\(^{(n)}\), OH\(^{(d)}\), CO\(^{(bcin)}\), 13C\(^{(n)}\), CS\(^{(afn)}\), C\(^{34}\)S\(^{(f)}\), SiO\(^{(jkmn)}\), 29SiO\(^{(km)}\), 30SiO\(^{(m)}\), NS\(^{(k)}\), SO\(^{(kmn)}\), SO\(^{+}\)
3 atoms	NH\(_2\(^{(n)}\), H\(_2\)O\(^{(hn)}\), H\(_2\)\(^{17}\)O\(^{(n)}\), C\(_2\)H\(^{(ekmn)}\), HCN\(^{(aeefkmn)}\), H\(^{13}\)C\(_{N}\)(\(^{(efkmn)}\), HC\(^{15}\)N\(^{(jkmn)}\), HNC\(^{(aeefkmn)}\), HN\(^{13}\)C\(^{(efkmn)}\), H\(^{15}\)NC\(^{(fkmn)}\), N\(_2\)H\(^{(ak)}\), HCO\(^{+}\)(\(^{(aeefkmn)}\), H\(^{13}\)CO\(^{+}\)(\(^{(aeefkmn)}\), HC\(^{18}\)O\(^{(fkmn)}\), HC\(^{17}\)O\(^{+}\)(\(^{(fkmn)}\), HCO\(^{(kmn)}\), HOC\(^{+}\)(\(^{(kmn)}\), H\(_2\)S\(^{(f)}\), H\(^{34}\)S\(^{(f)}\), H\(_2\)Cl\(^{+}\)(\(^{(n)}\), H\(_2\)Cl\(^{37}\)\(^{+}\)(\(^{(n)}\), HCS\(^{+}\)(\(^{(n)}\), C\(_2\)S\(^{(k)}\)
4 atoms	NH\(_3\(^{(ghn)}\), H\(_2\)CO\(^{(cek)}\), I-C\(_3\)H\(^{(k)}\), HNCO\(^{(kmn)}\), HOCO\(^{+}\)(\(^{(km)}\), H\(_2\)CS\(^{(k)}\)
5 atoms	CH\(_2\)NH\(^{(knm)}\), c-C\(_3\)H\(_2\(^{(ekm)}\), I-C\(_3\)H\(_2\(^{(k)}\), H\(_2\)CCN\(^{(k)}\), H\(_2\)CCO\(^{(k)}\), C\(_4\)H\(^{(k)}\), HC\(_3\)N\(^{(ejkm)}\)
6 atoms	CH\(_3\)OH\(^{(klm)}\), CH\(_3\)CN\(^{(km)}\), NH\(_2\)CHO\(^{(m)}\)
7 atoms	CH\(_3\)NH\(_2\(^{(km)}\), CH\(_3\)C\(_2\)H\(^{(km)}\), CH\(_3\)CHO\(^{(k)}\)

Toward the SW image

Toward the NE image

Muller et al. 2014
Molecular absorber MA0.68 toward B 0218+357

MERLIN/VLA 5 GHz (Biggs et al. 2001)
HST image (York et al. 2005)
Absorption profiles in MA0.68

![Absorption profiles in MA0.68](image-url)
$^{13}\text{C}/^{18}\text{O}$ vs $^{13}\text{C}/^{15}\text{N}$
Isotopic ratios – measured vs chemical evolution models

Model results from Kobayashi et al. 2011
\textbf{\(^{35}\text{Cl}/^{37}\text{Cl} \text{ isotopic ratio}}\)

- \(^{35}\text{Cl} / ^{37}\text{Cl} \text{ ratio in the Sun is 3.13} \)
 - Mainly from supernova nucleosynthesis
- \textbf{MA0.89} SW & NE show ratios \(\sim 3\) in both \(\text{H}_2\text{Cl}^+\) and \(\text{HCl}\)
 - Same ratio in lines of sight at different galactocentric radii (2 vs. 4 kpc), as well as in gas of low and high molecular fraction
 - No significant metallicity gradient or difference in stellar populations; and ISM well mixed
- \textbf{MA0.68} has ratio of \(2.2 \pm 0.3\), the first isotopic ratio to differ between these two galaxies
 - C, N, O, S isotopic ratios the same in both galaxies
 - MA0.68 potentially older (more AGB contribution) or has higher metallicity
Chlorine chemistry

[Chemical network diagram for chlorine chemistry, showing the abundance/reactivity of various chlorine species.]

Neufeld & Wolfire 2009
Chlorine chemistry

• Chlorine has fairly simple chemical network, but we lack constraints on e.g. gas composition along line of sight, metallicity, dust...

• Simple analytical model to explore how chlorine chemistry varies with density, UV radiation field (G_0), cosmic ray ionization rate

• Measure $[\text{H}_2\text{Cl}^+]/[\text{HCl}] \sim 1$ in MA0.89 SW and > 17 in MA0.89 NE
 • Reflect higher molecular fraction in MA0.89 SW as traced by HCl
 • Need $G_0 > 10$
 • Cosmic ray ionization few times higher than Solar neighborhood
 • May be indicative of a higher star formation rate
Summary

- Intermediate redshift molecular absorbers provide a powerful tool to study the ISM in distant galaxies.
- MA0.89 and MA0.68 mainly show enrichment by massive stars.
 - Only differ in the $^{35}\text{Cl}/^{37}\text{Cl}$ isotopic ratio.
- Chlorine chemistry implies increased UV radiation field and cosmic ray ionization rate in MA0.89.