Prevalence of Complex Organic Molecules in Prestellar Cores Within the Taurus Star Forming Region

Samantha Scibelli

3rd year Graduate Student and NSF Fellow Advised by Dr. Yancy Shirley

Steward Observatory, University of Arizona

Celebrating The First 40 Years Of Alexander Tielens' Contribution To Science: The Physics And Chemistry Of The ISM Palais des Papes in Avignon, France. 2nd – 6th September 2019

Origins of Complex Molecules

Gas: $CH_3OH_2^+ + e^- \rightarrow CH_3OH + H$ only 3% yield ... *too SLOW* (Geppert et al. 2006)

Origins of Complex Molecules

Solid: CO + H \rightarrow HCO + H \rightarrow H₂CO + H \rightarrow CH₃O + H \rightarrow CH₃OH

Chemical desorption **Chemical Reactive** Desorption . Neutral-Neutral Silicate or Carbonaceous reactions of radicals grain Chemical *Models predict* reactions abundances Ion-(Minissale et al. 2016, radiation which we can Vasyunin et al. 2017) constrain!

COMs in Prestellar Cores

Birthplace of low-mass stars ($M \le a \text{ few } M_{\odot}$) Dense ($10^4 - 10^5 \text{ cm}^{-3}$) & cold (≤ 10 K)

B68

Methanol CH₃OH

Dimethyl Ether CH₃OCH₃ When, where and how are these molecules forming in prestellar cores?

COMs in Prestellar Cores

(Bizzocchi et al. 2014, Jiménez-Serra et al. 2016, Spezzano et al. 2017, Chacón-Tanarro et al. 2017, Chacón-Tanarro et al. 2019)

COMs observed **in only a few (< 10)** wellknown dense and evolved prestellar cores

L1521E COM Line Survey

Arizona Radio Observatory (ARO) 12m dish COM Line Survey

Table 1. Complex Organic Molecule Fit Results								
Molecule	Transition	ν	E.u/k	A_{ul}	T_{mb}	$\sigma(\mathbf{T}_{mb})$	$I(T_{mb})$	$\sigma(I)$
		(GHz)	(mK)	(s^{-1})	(mK)	(mK)	$(\rm mK~km~s^{-1})$	$(mK \ km \ s^{-1})$
CH ₃ CHO	$3_{1,3} - 2_{0,2} A^*$	101.892410	7.7	4.0E-06	23.1	3.8	10.7	1.3
	$5_{0,5} - 4_{0,4}$ A	95.963465	13.8	3.0E-05	89.0	9.0	30.0	2.0
	$5_{0,5} - 4_{0,4} E$	95.947439	13.9	3.0E-05	50.7	8.0	22.76	2.0
	$2_{1,2} - 1_{0,1} A^{++}$	84.219750	5.0	2.4E-06	24.0	6.0	6.98	1.3
	4 _{0,4} - 3 _{0,3} A	76.8789525	9.2	1.5E-05	95.64	15.0	36.0	3.9
	4 _{0,4} - 3 _{0,3} E	76.8664357	9.3	1.5E-05	110.36	15.0	40.635	3.9
	$4_{1,4} - 3_{1,3} E$	74.9241336	11.33	1.3E-05	50.99	14.0	14.0	3.2
	4 _{1,4} - 3 _{1,3} A	74.8916770	11.26	1.3E-05	58.83	16.0	14.658	3.5
CH_3OCH_3	$4_{1,4} - 3_{0,3}$ AA	99.326072	10.2	5.53E-06	9.91	3.0	3.345	0.65
	$4_{1,4} - 3_{0,3} EE$	99.325217	10.2	5.53E-06	11.61	3.0	4.65	0.71
	$4_{1,4} - 3_{0,3}$ AE+EA	99.324364	10.2	5.53E-06	5.465	3.0	7.81	1.3
CH ₂ CHCN	$8_{0,8} - 7_{0,7}$	75.5856915	16.3	3.4E-05	58.6	7.0	16.71	1.6
	$9_{0,9} - 8_{0,8}$ *	84.946000	20.4	4.9E-05	29.9	4.0	12.0	1.7
	$9_{1,8} - 8_{1,7}$ *	87.312810	23.1	5.3E-05	24.3	4.7	9.9	1.9
$o-H_2C_4$	$10_{1,9} - 9_{1,8}$ *	89.687050	23.3	6.7E-05	12.0	2.3	5.13	0.9
	$10_{1,10} - 9_{1,9}$ *	88.940240	23.1	6.5E-05	23.8	2.85	8.2	1.1
o-H ₂ CCO	$5_{1,4} - 4_{1,3}$ *	101.981390	13.7	1.1E-05	102.3	3.9	42.8	1.5
p-H ₂ CCO	$5_{0,5} - 4_{0,4}$ *	101.036710	14.5	1.1E-05	67.3	6.4	32.0	2.5
trans-HCOOH	$4_{0,4} - 3_{0,3}$ *	89.579170	10.8	7.2E-06	10.9	2.7	5.4	1.1
	4	86.546100	12.6	6.1E-06	12.1	3.0	5.9	1.2

NOTE- * Transitions detected using MAC backend

Scibelli et al., in Prep

L1521E COM Line Survey

Acetaldehyde (CH₃CHO) Detections

Scibelli et al., in Prep

Organics Prevalent in L1521E! What about in a more representative sample of cores?

Scibelli et al., in Prep

Survey of Starless and Prestellar Cores in Taurus

Conducted a large-sample systematic survey of 31 prestellar cores selected from NH₃ mapping results (Seo et al. 2015) in the Taurus Star Forming region

Detected methanol (CH₃OH) in 100% of the cores targeted!

Detected methanol (CH₃OH) in 100% of the cores targeted!

Detected acetaldehyde (CH₃CHO) in 68% of the cores targeted!

Detected acetaldehyde (CH₃CHO) in 68% of the cores targeted!

CH₃CHO: CTEX Method

CH₃CHO: CTEX Method

CH₃CHO: CTEX Method

CH₃CHO: CTEX Method

CH₃OH: RADEX Method

Core Abundances

Methanol Abundances

ARO 12m OTF Mapping

Mapping helps us understand the distribution of methanol along the *filaments*

ARO 12m OTF Mapping

Mapping helps us understand the distribution of methanol along the *filaments*

Methanol Abundance Maps

Deuterated Methanol: Survey of BIO Region

Seo06

0.3

75 % Detection Rate!

16'00.0"

12'00.0"

08'00.0"

04'00.0"

+28°00'00.0"

+27°56'00.0"

40.00s

20.00s

RA (J2000)

Dec (J2000)

Deuteration fraction on average ~ 10% for reasonable excitation temperatures (> 4K)

Seo07

Seo08

Next: Vinyl Cyanide Survey

Lines Targeted (simultaneously):

Vinyl Cyanide: $CH_2CHCN \ 8_{0,8} - 7_{0,7}$ (75.6 GHz) Vinyl Cyanide: $CH_2CHCN \ 8_{1,8} - 7_{1,7}$ (73.98 GHz) Ethyl Cyanide: $CH_3CH_2CN \ 8_{1,8} - 7_{1,7}$ (73.35 GHz) Methyl Cyanide: $CH_3CN \ 4_0 - 3_3$ (73.59 GHz)

Important Takeaways

- I. The COMs acetaldehyde, dimethyl Ether and vinyl Cyanide have been detected in young core L1521E!
- 2. We have observed methanol in 100% of the 31 Taurus cores targeted and acetaldehyde in 68%!
 - One of the first survey's to target a large, homogenous sample of cores, warranting a robust comparison between cores of similar environmental conditions
- 3. Abundance measurements of COMs will provide constraints for astrochemical models

Complex Organics are forming early and often in prestellar cores!

Important Takeaways

- I. The COMs acetaldehyde, dimethyl Ether been detected in young core L1521E!
- 2. We have observed methanol in 100% of the and acetaldehyde in 68%!
 - One of the first survey's to target a large, homo warranting a robust comparison between core conditions
- 3. Abundance measurements of COMs will astrochemical models

Complex Organics are forming early and often in prestellar cores!