

Unravelling dust nucleation in astrophysical media Developing a selfconsistent non steadystate, non-equilibrium polymer nucleation model for AGB stellar winds

Leen Decin – KU Leuven – Belgium – University of Leeds – UK

Justification

@Xander Tielens – NAC 2005 - Blankenberge

What is an AGB star?

The outer parts of the AGB star

AGB wind characteristics

Interstellar bow shock

The chemical life cycle of gas and dust species

Understanding the onset of the AGB wind and its chemical composition

- 1. What kind of material?
- 2. How much material?
- 3. How fast is it being lost?

Oxygen-rich winds

Other astrophysical media

Novae, supernovae, protoplanetary nebulae, interstellar shocks, exoplanets, ...

ALMA

oxides & hydroxides as dust precursors

Self-consistent AGB wind

Boulangier 2019

Hydrochemistry

1004-1124

CH

OHCO+,0.502.5i0+,0H.02

CRAw

NAH

HSICR

McSiJkE

юняни онияноза

Current chemistry

2 step improvement

Microphysical heating and cooling processes

H ₂ chemical cooling
H ₂ chemical heating
CO rotational lines Collisions by H and H ₂
CIE cooling H ₂ -H ₂ and H ₂ -He pairs
Metal fine-structure line cooling

Cosmic ray heating

Cooling is very efficient

Nucleation

Current nucleation

Current nucleation

Current nucleation

Nucleation candidates choice based on

 $(SiO)_{10} < (TiO_2)_{10} < (MgO)_9 < (Al_2O_3)_8$

What if combined with network?

- 1. No $Al_2O_3 \rightarrow No Al_2O_3$ -clusters
- 2. No MgO \rightarrow No MgO-clusters
- 3. SiO-clusters equally inefficient
- 4. TiO₂-clusters equally efficient

TiO₂-clusters are the best candidate

Planet Earth – Meteorites

Al₂O₃-clusters are best candidate

- Abundant in presolar grains (much more than Ti-oxides)
- Dust observed close to the star (at high temperature)
 Only feasible for Al₂O₃
- Need for revision of Al-reactions or bypass (Al₂O₃)_{n=1}

Gobrecht et al. (in prep)

Future

You have to look within for value, but beyond for perspective.

- Denis Waitley -