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New framework which combines a thermo-chemical disk model and an full gas-grain chemical model
(Ruaud & Gorti, submitted to Ap]J)



Thermo-chemical disk model

Iterations to get density and temperature structure at vertical hydrostatic equilibrium
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Gas-grain chemical model

Time-dependent three-phase chemical model (~500 species and ~7000 reactions)

e Surface and mantle diffusion Accretion \

Swapping /
Desorption

e Reactions through the Langmuir-Hinshelwood
process

Dissociation
. Diffusion
* Surface and sub-surface photoprocessing by
stellar and interstellar photons and cosmic-rays <>
generated photons (}
e Desorption restricted to the top two monolayers Reaction 4
(thermal desorption, chemical desorption and Reactive surface
photodesorption)

Three phase model:

gas, ice surtace and ice mantle
(Ruaud et al. 2016)

* Grain growth by accretion of molecules




Results obtained with a typical disk
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Predicted ice composition

Ice mainly consists of simple molecules: H,O, CO, CO,, CH4, CH30H, HCN, ...




Predicted ice composition

Complex molecules efficiently form in the inner disk
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~0.1-1% relative to water



Chemistry of the midplane

Three chemically distinct regions in the disk midplane:
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Chemistry of the midplane

Three chemically distinct regions in the disk midplane:

(1) Inner disk midplane (r<100 au):

-low UV flux Efficient formation of COMs: radicals
- . .
-Ts>15 K diffuse at the surface of grains

(2) Outer disk midplane (r>100 au):

-Substantial UV - Hydrogenation reactions
-Ta<15 K dominate the chemistry

(3) Interface molecular layer / midplane or water
condensation front:

- Important UV N Important photoprocessing of
-T4g215 K the ice




Impact of ice photochemistry on gas-phase composition

Photo-processing of the ice near the water condensation front:
e Photodesorption
e Photodissociation and re-formation at the surface of the ice: promotes chemical desorption
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Impact on vertical CO snowline

e Efficient formation of sCO; near water condensation
front impacts the location of the vertical CO snowline:
shifts higher up from the disk midplane

sHoO + hry — sOH + sH
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Impact on the emission of CO isotopologues

Predicted line emissions can decrease by a factor of ~10
(work in progress)
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¢ Chemistry in the midplane depends mainly on the radial and vertical gradients of the dust temperature
and on photoprocesses
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Thank you for your attention!



Chemistry of the midplane

e Radial CO snowline also impacted:
- Move closer to the star as a function of time
- Conversion driven by cosmic rays

e Impacts NoH*: tracer of CO snowline

Ny + Hi — NoH™' + Hs
CO + NoH" — HCO™ + N»

3 2 1 0 -1 -2 -3 Qi et al. 2013

Twin=39K from NoH+*]J=1-0 and J=4-3
(Schwarz et al. 2019)

CO snowine
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e Radial CO snowline also impacted:
- Move closer to the star as a function of time
- Conversion driven by cosmic rays

e Impacts NoH*: tracer of CO snowline

Ny + Hi — NoH™' + Hs
CO + NoH" — HCO™ + N»

3 2 1 0 -1 -2 -3 Qi et al. 2013
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Tkjn:39K fr()m NZH ]:1'0 and ]:4-3 CO SHOWline

(Schwarz et al. 2019)



Impact on the composition of the gas
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Two-phase vs three-phase approximation

* Two-phase approximation over predicts gas-
phase abundances: all the mantle is available
for desorption

e Most disk chemical models use the two-
phase approximation

e Could explain the systematic overestimation of
cold water lines as compared to observations:

depletion factors of ~100 for oxygen have been
invoked (Du et al. 2017)
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