From Simple to Complex Molecules in Interstellar Ices

Adwin Boogert

NASA IRTF

University of Hawaii

Topics

- 1. Introduction: Questions about Ice Formation Processes
- 2. H₂O-rich Ice Phase
- 3. CO-rich Ice Phase
- 4. Salts
- 5. Heated Ices
- 6. Ice Porosity
- 7. Back to the Gas Phase
- 8. Future Missions
- 9. Conclusions

1. A Key Question

Which processes and conditions lead from atoms to the complex molecules needed for life?

I. Gas phase chemistry (often involving ions, e.g. conversion C⁺ to CO)

I. Gas phase chemistry (often involving ions, e.g. conversion C⁺ to CO)

II. Grain surface chemistry (freeze out <100 K): producing simple molecules. Efficient hydrogenation due to tunneling.

I. Gas phase chemistry (often involving ions, e.g. conversion C⁺ to CO)

II. Grain surface chemistry (freeze out <100 K): producing simple molecules. Efficient hydrogenation due to tunneling.

III. Energetic and thermal processing ices: converting simple to complex molecules

In dense clouds, grain surface chemistry rules.

This was modeled long ago:

Astron. Astrophys. 114, 245-260 (1982)

CR/UV CO O H H2O NH4+? H Grain CO2 H CH4 NH3 H N

Model Calculations of the Molecular Composition of Interstellar Grain Mantles

A. G. G. M. Tielens* and W. Hagen** Laboratory Astrophysics Group, Rijksuniversiteit, 2300 RA Leiden, The Netherlands

Received February 1, accepted May 19, 1982

THE ASTROPHYSICAL JOURNAL, 399: L71–L74, 1992 November 1 © 1992. The American Astronomical Society. All rights reserved. Printed in U.S.A.

ON THE MOLECULAR COMPLEXITY OF THE HOT CORES IN ORION A: GRAIN SURFACE CHEMISTRY AS "THE LAST REFUGE OF THE SCOUNDREL"

> S. B. CHARNLEY,^{1,2} A. G. G. M. TIELENS,¹ AND T. J. MILLAR³ Received 1992 May 5; accepted 1992 August 19

In dense clouds, grain surface chemistry rules.

And "proven" in laboratory experiments:

THE ASTROPHYSICAL JOURNAL, 571:L173–L176, 2002 June 1 © 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

EFFICIENT FORMATION OF FORMALDEHYDE AND METHANOL BY THE ADDITION OF HYDROGEN ATOMS TO CO IN $\rm H_2O\text{-}CO$ ICE AT 10 K

NAOKI WATANABE AND AKIRA KOUCHI Institute of Low Temperature Science, Hokkaido University, N19-W8, Kita-ku, Sapporo, Hokkaido 060-0819, Japan; watanabe@lowtem.hokudai.ac.jp Received 2002 April 2; accepted 2002 April 25; published 2002 May 9

And "proven" in Monte Carlo simulations:

A&A 508, 275–287 (2009)
DOI: 10.1051/0004-6361/200913119
© ESO 2009

Microscopic simulation of methanol and formaldehyde ice formation in cold dense cores

H. M. Cuppen¹, E. F. van Dishoeck^{1,2}, E. Herbst³, and A. G. G. M. Tielens¹

New questions:

- How complex do the molecules get via cold grain surface chemistry?
- Can we pinpoint and quantify the importance of gas phase and energetic processing?

IC 1396, clustered star formation near massive star, analogous to early Earth (e.g., Adams 2010)

Reach+ 2009

2. H₂O-rich lces

Dense cloud

 $A_v \sim 0$

A. Boogert, ISM, Avignon

2. H_2O -rich Ices: $H_2O:CO_2$

A. Boogert, ISM, Avignon

A. Boogert, ISM, Avignon

2. H₂O-rich Ices: "Dirty Ice"

2. H₂O-rich Ices: Homogeneity

The H₂O-rich ice is probably not homogeneously mixed due to:

- gradient C/CO ratio at cloud edge
- mixing between layers
- ...

2. H_2 O-rich Ices: H_2 O:CH₄

- CH_4 forms together with H_2O :
- CH₄ absorption profile
- CH₄/H₂O enhanced at cloud edge due to incomplete CO formation? • Could be source of C-chain COMs

A. Boogert, ISM, Avignon

2. H₂O-rich Ices: Carbon Dust

 H_2O ice on top of or mixed with carbonaceous dust leads to CO_2 by energetic particle radiation.

- Proposed as explanation carbon deficiency solar system objects (Sabri+ 2015)
- Observed CO₂
 reproduced on time scale of 10⁷ yr
 (Ioppolo+ 2013), much slower than grain surface route.

• By-products?

3. CO-rich Ices

Starless core L 429-C, K-band $A_v > 3$ CO ice

3. CO-rich Ices

Starless core L 429-C, K-band $A_v > 3$ CO ice

3. CO-rich Ices: Pure CO

A. Boogert, ISM, Avignon

3. CO-rich Ices: "Polar" Wing

A_v>3 CO ice

Migration of CO into H₂O-rich ice is feasible (Collings+ 2003, Lauck+ 2015)

Intermezzo: Ice Band Profiles

Tielens+ 1991

CO present in apolar and polar ices:

- Apolar: nearly pure CO.
- Polar: CO mixed with H₂O and/or CH₃OH
- Requires grain shape corrections for analysis.

Intermezzo: Ice Band Profiles

Boogert, Blake, & Tielens (2004)

Intermezzo: Ice Band Profiles

Application of grain shape corrections:

- Most ice bands fitted by "CDE" (irregular) grain shapes.
- One low mass YSO has spheres component (Poteet+ 2013):

 likely due to eruption, sublimating ices and rapid recondensation at high temperature, in crystalline phase.

3. CO-rich Ices: CH₃OH

3. CO-rich Ices: CH₃OH

3. Maps Needed!

3. CO-rich Ices: CH₃OH

Molecular level (Monte Carlo) simulations of H reacting with frozen CO depend on ice structure, energy barriers, rates, binding energies, etc.

Cuppen+ 2017

Cuppen+ 2009

4 Sept 2019

3. CO-rich Ices: CH₃OH

- YSOs: increasing CH₃OH ice abundances could be time effect. But also:
 - dust temperature (freeze out, H residence time)
 - density (freeze out, gas H/H₂)

▲Background stars: abundance varies by 1-12%:

• temperature, density or time effect?

3. CO-rich Ices: COMs

Laboratory experiments of cold, grain surface formation of COMs ongoing (Linnartz+ 2015, Fedoseev+ 2017). Microscopic Monte Carlo modeling too (Cuppen et al.).

4. Identification Challenges

Several ice absorption bands hard to identify and some still uncertain

4.62 μm "XCN" band

Van Broekhuizen+ 2005

A. Boogert, ISM, Avignon

4. Salts

"The OCN⁻ Wars of the 1990s" (Reggie Hudson)

Identification of the 4.62 μ m band with OCN⁻ more or less settled. Easily produced by low-T acid-base chemistry (Raunier+ 2004): NH₃ + HNCO \rightarrow NH₄⁺ + OCN⁻

4. Salts

 NH_3 +HNCO $\rightarrow NH_4$ ++OCN-And how about NH⁺? Mixed with H₂O ice NH_{4}^{+} HNCO NH. OCN 0.3 $\sqrt{6.85}$ µm band seen in ISM emperature a. 0.2 - \checkmark Band shifts at higher T. b. C. χ Band too broad and shallow 0.1 in H₂O mixtures (Galvez+ 1200 1600 1400 2200 1800 2300 1000 2010). wavenumber (cm⁻¹) NH₄+ OCNχ "observed" OCN⁻/NH⁺~0.1 Need more counter-ions.

4. More Salts?

Where are the counter ions?

UV irradiation H₂O:CO₂:NH₃:O₂ produces NH₄⁺ and many more ions, e.g., NO₂⁻ NO₃⁻ and HCO₃⁻ (Schutte & Khanna 2003).

4. Salts: Observ. Constraints

IC 1396; Reach+ 2009

- 6.85 µm band has distinct temperature dependence
- Carrier sticks around longer than H₂O ice, but not as long as silicates: a salt (Boogert+ 2008)?

4. Salts: Comet 67P

Altwegg et al., ARAA 57 (2019), on in situ measurements with Rosetta/Rosina in comet 67P/Churyumov-Gerasimenko

"...NH₃ seems to be, at least partly, in a more refractory phase, probably as ammonium salt (Altwegg et al., 2019) than as pure NH_3 in $H_2O...$ "

https://ui.adsabs.harvard.edu/abs/2019arXiv190804046A/abstract

K. Altwegg at IAUS 350, Cambridge, UK (April 2019):

Rosina detector was hit, but not permanently damaged, by a particle, likely containing NH_4^+ salt.

5. Heated Ices

•Diffusion radicals creates new, more complex species (Herbst & Van Dishoeck 2009)

•Purely thermal reactions among species formed by grain surface chemistry (Theule+ 2013). Comprehensive laboratory experiments:

Acid-base reactions

Nucleophilic additions

 $\begin{array}{l} H_2O+HNCO \rightarrow H_3O^+OCN^-\\ NH_3+HCOOH \rightarrow NH_4^+HCOO^-\\ NH_3+HNCO \rightarrow NH_4^+OCN^-\\ NH_3+HCN \rightarrow NH_4^+CN^-\\ \end{array}$

Aminomethanol (NH₂CH₂OH) compared to observations (Bossa+ 2009):

For frozen COMs, running into infrared confusion limit. But better observations will help (see also Terwisscha van Scheltinga+ 2018) Complication wit these reactions is location of reaction partners:

- Are reaction partners in same ice phase (CO versus H₂O-rich)?
- Diffusion in bulk ice much slower than on surface. Pores and cracks will improve diffusion and thus COM formation.

6. Porosity

• Simulation by He+ 2019:

- Porosity hard to determine in ISM ice.
- Absence CO-OH band 2152 cm⁻¹ at CO-H₂O interface likely due to mixed H₂O (NH₃, CH₄)
- Fraser+ 2004:

7. Back to Gas: Prestellar Core

Detection of COMs at ~8000 AU from center prestellar core (Vastel+ 2014):

- non-thermal desorption mechanism, liberating H₂O and other simple species
- followed by a gas phase route to COMs.

Prime desorption mechanism is not ice mantle explosions (Holdship+ 2019).

7. Back to Gas: Cosmic Rays

Gas phase C₂O and C₃O suggested to originate from CO ices after 1000 yr irradiation. Should be short-lived in the gas, confirmed by the observations.

- How about other species produced by irradiation?
- Desorption process?

A. Boogert, ISM, Avignon

7. Back to Gas: Shocks

Formamide (NH₂CHO) detected in L1157-B1 shock:

- different distribution than other organics, so formamide does not come from ice. Plus, formamide released from ice destroyed in 2000 years.
- gas phase chemistry simple ice sublimation species can reproduce it.

8. Future: Ice Maps

Limited new work on H_2O ices in past ~10 years.

Missing: maps of ice abundance and processing gradients on large scale (dense cores) and small scale (envelope, disk)

Upcoming missions will shake up this field:

JWST—map individual cores and YSOs, in all abundant ices

study weaker species in individual sight-lines

SPHEREx – map entire sky in H_2O , CO_2 , CO ice

4 Sept 2019

8. Future: Ice Maps with JWST

Interstellar ice knowledge jumps with each space mission:

- Sensitivity
- Spectral resolution
- Spectral coverage
- Mapping speed
- Large samples
- Availability

Infrared Space Observatory 1995-1998

Spitzer Space Telescope 2003-2009

A. Boogert, ISM, Avignon

James Webb Space Telescope (JWST) 2021-20??

8. Future: Ice Maps with JWST

Selections Made for the JWST Director's **Discretionary Early Release Science Program**

News Feature • November 13, 2017

[€] ID ≑	ERS Program 🗢	PI & Co-PIs ♦
1288	Radiative Feedback from Massive Stars as Traced by Multiband Imaging and Spectroscopic Mosaics	PI: Olivier Berne (Universite Toulouse) CoPIs: Emilie Habart (Institut d'Astrophysique Spatiale) and Els Peeters (University of Western Ontario)
1309	IceAge: Chemical Evolution of Ices during Star Formation	PI: Melissa McClure (Universiteit van Amsterdam) CoPIs: Adwin Boogert (University of Hawaii) and Harold Linnartz (Universiteit Leiden)
1324	<u>Through the Looking GLASS: A</u> <u>JWST Exploration of Galaxy</u> <u>Formation and Evolution from</u> <u>Cosmic Dawn to Present Day</u>	PI: Tommaso Treu (University of California - Los Angeles)
1328	<u>A JWST Study of the Starburst-</u> <u>AGN Connection in Merging</u> <u>LIRGs</u>	PI: Lee Armus (California Institute of Technology)
1334	The Resolved Stellar Populations	PI: Daniel Weisz (University of

8. Future: Ice Maps SPHEREx

Interstellar ice knowledge jumps with each space mission:

- Sensitivity
- Spectral resolution
- Spectral coverage
- Mapping speed
- Large samples
- Availability

Infrared Space Observatory 1995-1998

4 Sept 2019

Spitzer Space Telescope 2003-2009

James Webb Space Telescope (JWST) 2021-20??

A. Boogert, ISM, Avignon

SPHEREx 2023-2026

8. Future: Ice Maps SPHEREx All sky spectra 0.7-5 µm at low spectral (40-150) and spatial (6

arcsec) resolution

SPHEREx ice catalog will increase number of ice targets from ~200 to >20,000

Well timed for follow up with JWST at higher spatial, spectral resolution and sensitivity.

See http://spherex.caltech.edu/ See talk by Gary Melnick tomorrow.

8. Future: Ice Maps with SOFIA

H₂O ice lattice modes observable in emission, enabling ice mapping.

Very limited instrumentation.

SOFIA/HIRMES to be commissioned in next year or two.

9. Conclusions

- Grain surface chemistry rules.
- COMs likely formed under cold, non-energetic conditions in CO-rich ices. CH₃OH best studied and observed.
- Energetic formation processes plausible but at low level in dense clouds.
- Ice heating often observed, and likely leading to COMs.
- Salts important component of grain mantles and comets.
- Degree of porosity amorphous H₂O observationally not constrained.
- Desorption of COMs and in dense cores not well understood.
- Much-needed ice maps for study ice evolution available within a few years with JWST and SPHEREx.

Extra Slides

Salts: Observ. Constraints

Carrier of 6.85 um band seems sticks around longer than H2O ice, but not as long as silicates: a salt?

HDO Ice: Link with Comets

HDO/H₂O ice ratio measurements important:

A. Boogert, ISM, Avignon

HDO Ice: Link with Comets

HDO/H₂O ice ratio measurements

- Difficult!
- <1% in YSO envelopes (Paris et al. 2003)
- 2-22% in disks (tentative; Aikawa et al. 2012)
- Deuteration H₂O lower than CH₃OH: formed at warmer, earlier conditions (Ceccarelli et al. 2014).

Envelopes+Disks: Heated Ices

