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1. A Key Question

Which processes and conditions lead from atoms to the complex 
molecules needed for life?

        cloud          → prestellar core →   YSO env.   →  pp disk    →     comet

H, C, O, N, 
S...

      glycine,   
  ethylene glycol.
  ...
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1. Molecule Formation
I. Gas phase chemistry (often involving ions, e.g. conversion C+ to CO)
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1. Molecule Formation
I. Gas phase chemistry (often involving ions, e.g. conversion C+ to CO)

II. Grain surface chemistry (freeze out <100 K): 
     producing simple molecules. Efficient 
     hydrogenation due to tunneling.
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1. Molecule Formation
I. Gas phase chemistry (often involving ions, e.g. conversion C+ to CO)

II. Grain surface chemistry (freeze out <100 K): 
     producing simple molecules. Efficient 
     hydrogenation due to tunneling.

III. Energetic and thermal processing ices:
     converting simple to complex molecules
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1. Molecule Formation
In dense clouds, grain surface chemistry rules.

This was modeled long ago:
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1. Molecule Formation
In dense clouds, grain surface chemistry rules.

And “proven” in laboratory experiments:

And “proven” in Monte Carlo simulations:
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1. Molecule Formation

New questions:

● How complex do the molecules get via cold grain surface chemistry? 

● Can we pinpoint and quantify the importance of gas phase and energetic 
processing?
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1. Molecule Formation

Reach+ 2009

O star

IC 1396, clustered 
star formation near 
massive star, 
analogous to early 
Earth (e.g., Adams 
2010)
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2. H
2
O-rich Ices
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2. H
2
O-rich Ices: H

2
O:CO

2
 

H
2
O and CO

2
 have same 

formation threshold: mixed. 
CO+OH → CO

2 
(e.g., 

Ioppolo+ 2011)

Boogert, Gerakines, & Whittet, 2015
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2. H
2
O-rich Ices: H

2
O:CO 

H
2
O and CO

2
 have same 

formation threshold: mixed 
CO+OH → CO

2

H
2
O not mixed with CO and 

CH
3
OH (<1%)

Boogert, Gerakines, & Whittet, 2015
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2. H
2
O-rich Ices: “Dirty Ice”

H
2
O ice “dirty”: 

mixed with >35% 
other species
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2. H
2
O-rich Ices: Homogeneity 

The H
2
O-rich ice is probably not homogeneously mixed due to:

● gradient C/CO ratio at cloud edge

● mixing between layers

● ...
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2. H
2
O-rich Ices: H

2
O:CH

4
 

CH
4
 forms together with H

2
O:

●CH
4
 absorption profile

●CH
4
/H

2
O enhanced at cloud edge due to incomplete CO formation?

○Could be source of C-chain COMs

Oberg+ 2008



 4 Sept 2019  A. Boogert, ISM, Avignon 17

2. H
2
O-rich Ices: Carbon Dust

H2O ice on top of or mixed with carbonaceous dust leads to CO2 by 
energetic particle radiation.

●Proposed as 
explanation carbon 
deficiency solar 
system objects (Sabri+ 
2015)

●Observed CO
2
 

reproduced on time 
scale of 107 yr 
(Ioppolo+ 2013), 
much slower than 
grain surface route. 

●By-products?
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3. CO-rich Ices
Starless core L 429-C, K-band

                           A
V
>3

                   CO ice
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3. CO-rich Ices
Starless core L 429-C, K-band

                           A
V
>3

                   CO ice
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3. CO-rich Ices: Pure CO
Starless core L 429-C, K-band

                           A
V
>3

                   CO ice
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3. CO-rich Ices: “Polar” Wing
Starless core L 429-C, K-band

                           A
V
>3

                   CO ice

Migration of CO 
into H

2
O-rich ice is 

feasible (Collings+ 
2003, Lauck+ 2015)
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Intermezzo: Ice Band Profiles

CO present in apolar and polar ices:

●Apolar: nearly pure CO. 

●Polar: CO mixed with H
2
O and/or 

CH
3
OH

●Requires grain shape corrections for 
analysis.

Tielens+ 1991
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Better data: 

●grain shape corrections 
crucial

●apolar CO is ~90% 
pure. 

Intermezzo: Ice Band Profiles

Boogert, Blake, & Tielens (2004)
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Application of grain shape 
corrections:

●Most ice bands fitted by 
“CDE” (irregular) grain 
shapes.

●One low mass YSO has 
spheres component (Poteet+ 
2013):

○ likely due to eruption, 
sublimating ices and rapid 
recondensation at high 
temperature, in crystalline 
phase.

Intermezzo: Ice Band Profiles
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3. CO-rich Ices: CH
3
OH

Starless core L 429-C, K-band

prestellar core, 
A

V
>25

(detection limit 
A

V
~50)                           A

V
>3

                   CO ice

                           A
V
>8

                  CH
3
OH ice
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3. CO-rich Ices: CH
3
OH

Starless core L 429-C, K-band

prestellar core, 
A

V
>25

(detection limit 
A

V
~50)                           A

V
>3

                   CO ice

                           A
V
>8

                  CH
3
OH ice

COM formation!
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3. Maps Needed!
Starless core L 429-C, K-band

prestellar core, 
A

V
>25

(detection limit 
A

V
~50)                           A

V
>3

                   CO ice

                           A
V
>8

                  CH
3
OH ice

Ice mapping is 
important!
For recent results on 
CO and CH

3
OH ice 

observations and JWST 
preparations see talk by 
Laurie Chu and poster 
by Klaus Hodapp
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Molecular level (Monte Carlo) simulations of H reacting with frozen CO 
depend on ice structure, energy barriers, rates, binding energies, etc.

3. CO-rich Ices: CH
3
OH

Cuppen+ 2009

12.0 K

15.0 K

Cuppen+ 2017
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●YSOs: increasing CH
3
OH 

ice abundances could be 
time effect. But also: 
● dust temperature (freeze 

out, H residence time)
● density (freeze out, gas  

H/H
2
)

   Background stars:  
abundance varies by 1-12%:

● temperature, density or 
time effect?

H
2C

O
/C

H
3O

H
3. CO-rich Ices: CH

3
OH

Cuppen+ 2009
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3. CO-rich Ices: COMs
Laboratory experiments of cold, grain surface formation of COMs 
ongoing (Linnartz+ 2015, Fedoseev+ 2017). Microscopic Monte 
Carlo modeling too (Cuppen et al.).
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4. Identification Challenges
Several ice absorption bands hard to identify and some still uncertain

Van Broekhuizen+ 2005

4.62 μm “XCN” band
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4. Salts
“The OCN- Wars of the 1990s” (Reggie Hudson)

Identification of the 4.62 μm band with OCN- more or less settled.
Easily produced by low-T acid-base chemistry (Raunier+ 2004):  
                           NH3 + HNCO → NH4+ + OCN-
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4. Salts

And how about NH
4

+?

√ 6.85 μm band seen in ISM

√ Band shifts at higher T.

χ Band too broad and shallow 
    in H2O mixtures (Galvez+ 
    2010).

χ “observed” OCN-/NH
4

+~0.1
    Need more counter-ions.

NH3+HNCO → NH4++OCN-

Mixed with H2O ice

Tem
p eratur e

OCN-

NH4+
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4. More Salts?

Where are the counter ions?

UV irradiation 
H2O:CO2:NH3:O2  produces 
NH4

+ and many more ions, 
e.g., NO2- NO3- and HCO3- 

(Schutte & Khanna 2003). UV-irradiated
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4. Salts: Observ. Constraints

IC 1396; Reach+ 2009

●6.85 μm band has distinct temperature dependence
●Carrier sticks around longer than H

2
O ice, but not as long as silicates: 

a salt (Boogert+ 2008)?
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4. Salts: Comet 67P

Altwegg et al., ARAA 57 (2019), on in situ measurements with 
Rosetta/Rosina in comet 67P/Churyumov-Gerasimenko 

“...NH
3
 seems to be, at least partly, in a more refractory phase, 

probably as ammonium salt (Altwegg et al., 2019) than as pure
NH

3
 in H

2
O...” 

https://ui.adsabs.harvard.edu/abs/2019arXiv190804046A/abstract

K. Altwegg at IAUS 350, Cambridge, UK (April 2019):

Rosina detector was hit, but not permanently damaged, by a 
particle, likely containing NH

4
+ salt.

  

https://ui.adsabs.harvard.edu/abs/2019arXiv190804046A/abstract
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5. Heated Ices

Grain size.

H
2
O ice crystallization 

“commonly” observed 
(T~70-90 K).

CO sublimation (T~20 K) 
and CO

2
 ice segregation  

(T~45 K) often observed.
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5. Heated Ices: Chemistry

●Diffusion radicals creates new, more complex species (Herbst & Van 
Dishoeck 2009)

●Purely thermal reactions among species formed by grain surface chemistry 
(Theule+ 2013). Comprehensive laboratory experiments:

  Acid-base reactions                             Nucleophilic additions
 
  H2O+HNCO → H3O+OCN-                  CO2+NH3 → NH2COOH
  NH3+HCOOH → NH4+HCOO-         CO2+CH3NH2 →  CH3NHCOOH
  NH3+HNCO → NH4+OCN-              H2CO+H2O →  HOCH2OH
  NH3+HCN → NH4+CN-                    H2CO+NH3 →  NH2CH2OH
                                                             H2CO+CH3NH2 →  CH3NHCH2OH
                                                              CH3CHO+NH3 →  NH2CH(CH3)OH
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 Theule+ 2013

Ic
e 

te
m

pe
ra

tu
re

5. Heated Ices: Chemistry
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 Theule+ 2013

5. Heated Ices: Chemistry
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 Theule+ 2013

5. Heated Ices: Chemistry
Ic

e 
te

m
pe

ra
tu

re
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Aminomethanol (NH2CH2OH) compared to observations (Bossa+ 2009):

For frozen COMs, running into infrared confusion limit.
But better observations will help (see also Terwisscha van Scheltinga+  
2018)

Unresolved
emission
line!

Noise!
5.5                6.0               6.5                7.0                7.5 μm

NH2CH2OH

Elias 16

RNO 91

W33A

5. Heated Ices: Chemistry
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5: Heated Ices

Complication wit these reactions is location of reaction partners:

●Are reaction partners in same ice phase (CO versus H
2
O-rich)?

●Diffusion in bulk ice much slower than on surface. Pores and cracks 
will improve diffusion and thus COM formation.
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6. Porosity

● Simulation by He+ 2019:

● Porosity hard to determine in ISM ice.
● Absence CO-OH band 2152 cm-1 at 

CO-H
2
O interface likely due to mixed 

H
2
O (NH

3
, CH

4
)

● Fraser+ 2004: 

Porous ASW Compact ASW
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7. Back to Gas: Prestellar Core

Detection of COMs at ~8000 AU from 
center prestellar core (Vastel+ 2014):

● non-thermal desorption mechanism, 
liberating H

2
O and other simple 

species

● followed by a gas phase route to 
COMs.

Prime desorption mechanism is not 
ice mantle explosions (Holdship+ 
2019). 

Vastel+ 2014
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7. Back to Gas: Cosmic Rays
Gas phase C

2
O and C

3
O suggested to originate from CO ices after 1000 yr 

irradiation. Should be short-lived in the gas, confirmed by the observations. 
● How about other species produced by irradiation? 
● Desorption process?

Urso+ 2019
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7. Back to Gas: Shocks

Formamide (NH
2
CHO) detected in L1157-B1 shock:

● different distribution than other organics, so formamide does not come 
from ice. Plus, formamide released from ice destroyed in 2000 years.

● gas phase chemistry simple ice sublimation species can reproduce it.

Codella+ 2017
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8. Future: Ice Maps

Upcoming missions will shake up this field:

JWST—map individual cores and YSOs, in all abundant ices

              study weaker species in individual sight-lines

SPHEREx – map entire sky in H
2
O, CO

2
, CO ice

Limited new work on H
2
O ices in 

past ~10 years.

Missing: maps of ice abundance 
and processing gradients on large 
scale (dense cores) and small scale 
(envelope, disk)
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8. Future: Ice Maps with JWST

Infrared Space 
Observatory 
1995-1998

●●●●●●

Spitzer Space 
Telescope 
2003-2009

●●●●●●

James Webb Space 
Telescope (JWST) 

2021-20??

●●●●●●

Interstellar ice knowledge jumps with each space mission:

● Sensitivity

● Spectral resolution

● Spectral coverage

● Mapping speed

● Large samples

● Availability
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 8. Future: Ice Maps with JWST
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8. Future: Ice Maps SPHEREx

Infrared Space 
Observatory 
1995-1998

●●●●●●

Spitzer Space 
Telescope 
2003-2009

●●●●●●

James Webb Space 
Telescope (JWST) 

2021-20??

●●●●●●

SPHEREx 
2023-2026

●●●●●●

Interstellar ice knowledge jumps with each space mission:

● Sensitivity

● Spectral resolution

● Spectral coverage

● Mapping speed

● Large samples

● Availability
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8. Future: Ice Maps SPHEREx
All sky spectra 0.7-5 μm at low 
spectral (40-150) and spatial (6 
arcsec) resolution

SPHEREx ice catalog will 
increase number of ice targets 
from ~200 to >20,000

Well timed for follow up with JWST 
at higher spatial, spectral resolution 
and sensitivity.

See http://spherex.caltech.edu/ 
See talk by Gary Melnick tomorrow.

http://spherex.caltech.edu/


 4 Sept 2019  A. Boogert, ISM, Avignon 53

8. Future: Ice Maps with SOFIA
H

2
O ice lattice modes observable in 

emission, enabling ice mapping.

Very limited  instrumentation.

SOFIA/HIRMES to be commissioned 
in next year or two.
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9. Conclusions
● Grain surface chemistry rules.

● COMs likely formed under cold, non-energetic conditions in CO-rich 
ices. CH

3
OH best studied and observed.

● Energetic formation processes plausible but at low level in dense clouds.

● Ice heating often observed, and likely leading to COMs.

● Salts important component of grain mantles and comets.

● Degree of porosity amorphous H
2
O observationally not constrained.

● Desorption of COMs and in dense cores not well understood.

● Much-needed ice maps for study ice evolution available within a few 
years with JWST and SPHEREx.
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Extra Slides
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Salts: Observ. Constraints

Carrier of 6.85 um band seems 
sticks around longer than H2O ice, 
but not as long as silicates: a salt?
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HDO Ice: Link with Comets
HDO/H

2
O ice ratio measurements important:

HDO/H
2
O ice

protostars

?

Lis et al. 2013, Ceccarelli et al. 2014
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HDO Ice: Link with Comets

HDO/H
2
O ice ratio measurements 

● Difficult!

● <1% in YSO envelopes (Paris et 
al. 2003)

● 2-22% in disks (tentative; 
Aikawa et al. 2012)

● Deuteration H
2
O lower than 

CH
3
OH: formed at warmer, 

earlier conditions (Ceccarelli et 
al. 2014).

Aikawa et al. 2012

crystalline HDO

amorphous HDO
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Ice tem
p

eratu
re

Envelopes+Disks: Heated Ices
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