

PAHs on/in water ice: structures, energetics and spectra from FTIR experiments and a multimethod theoretical study

E. Michoulier^{1,2}, J.A. Noble³, C. Aupetit⁴, C. Toubin², N. BenAmor¹, A. Simon¹, and <u>J. Mascetti⁴</u>.

¹Univ. Paul Sabatier, CNRS UMR 5626 LCPQ, F-31062 Toulouse cedex 09, France
 ²Univ. Lille, CNRS UMR 8523 PhLAM, F-59655, Villeneuve d'Ascq cedex - France
 ³Aix-Marseille Univ., CNRS UMR 7345 PIIM, F-13397 Marseille cedex 20, France
 ⁴Univ. Bordeaux, CNRS UMR 5255 ISM, F-33405 Talence cedex, France

Palam*

Celebrating the first 40 years of Alexander Tielens contribution to Science The Physics and Chemistry of the Interstellar Medium, Avignon, France, 2-6 September 2019.

The "AIB" spectrum can be roughly reproduced by IR features of mixtures of neutral, ionized, hydrogenated or **oxygenated** PAHs.

PAHs can condense on/in water ice mantles in cold dense regions and contribute to complex grain chemistry. Understanding the role of ice in the processes involving adsorbed PAHs is therefore a key issue in astrochemistry

A.G.G.M. Tielens, Annu. Rev. Astron. Astrophys. 2008

Photoreactivity of PAHs in amorphous water ices (ASW)

1. VUV irradiation studies (Ly-α)

- PAHs are efficiently ionised by VUV irradiation to form cations

- PAH⁺ cations react with H₂O
- Photoproducts are alcohols and ketones

Bernstein et al, Science 1999 Bernstein et al, ApJ 2002 Bouwman et al, A&A 2011 Cook et al, ApJ 2015

Photoreactivity of PAHs in amorphous water ices (ASW)

2. UV irradiation studies ($\lambda > 235$ nm)

FTIR spectra of Coronene $(C_{24}H_{12})$ adsorbed on ASW at 10K and after irradiation

- ca 5 eV vs IP coronene 7 eV / water 12 eV
- does ASW lower ionisation barrier?
- is there previous formation of a PAH-H₂O complex?

Gudipati & Allamandola, ApJ 2004 Guennoun et al, PCCP 2011 Guennoun et al, JPCA 2011

Photochemistry of coronene:H₂O complexes in Ar matrices

UV irradiation of a coronene:H₂O:Ar matrix (Hg lamp, $\lambda > 235$ nm)

- Water ice is not necessary for reactivity
- Small edge-on PAH:water complexes produce alcohols
- Reactivity possible at low H₂O abundances

2.37 2.37 2.37 2.37 2.37 2.37

Noble, Jouvet, Mascetti et al, A&A 2017

Experimental method: matrix isolation spectroscopy

- Study of PAH:H₂O complexes

Simple model for the interaction of
PAHs on dust grain
surfaces or in
interaction with
water

Pressure: 10⁻⁷ mbar, T surface: 10K, irradiation with Hg lamp ($\lambda > 235$ nm)

UV irradiation of PAHs in different types of water ices

Production of oxygenated PAHs efficient only in p-ASW, where dangling OH bonds are available in pores.

The reaction occurs with water in favorable geometries, similar to small water clusters: **role of the initial orientation of molecules.**

J.A. Noble et al, submitted.

- Photoreactivity restricted to porous ASW: what are the roles of water clusters and of the ice structure?

- The type of interaction with H₂O seems to be the key : what is the role of dOH dangling bonds? How the surface of ASW is perturbed by the adsorption of PAHs?

- Soft UV irradiation: no direct ionisation of coronene nor water photolysis: what is the influence of ice (water) on the IP of $d_{\rm H}$ Q d

Multi-method theoretical approach :

Molecular dynamics/force-field (MD/FF) simulations: adsorption sites of PAH and binding energy maps.

Starting from MD/FF configurations, a finite PAH-ice system is described within the Density Functional based Tight Binding **(DFTB)** scheme in its Self Consistent Charge (**SCC**) version, providing an explicit electronic structure description and the determination of the **influence of ice structure on the PAH ionisation potential (IP).**

PAH (Bz, Anth, Pyr, Coro) adsorption on d_{OH} at ASW surface

Adsorption and ionisation energies of PAHs on ice

SCC-DFTB vertical IP of pyrene adsorbed on water ice and corresponding geometries

1st-order dependence of the DFTB derived PAH-ice adsorption energy as a function of the number of C and H atoms and correlation laws between VIP values (DFTB) and pair interaction energies (FF)

CONCLUSIONS AND ASTROPHYSICAL IMPLICATIONS

PAH:water systems are very reactive: oxygenated PAHs are produced after short irradiation time with smooth UV radiation.
The formation of oxygenated PAHs occurs from first H₂O interactions, with no need for icy layer. The orientation of the PAH compared to the water molecules is a key factor controling the photoreaction pathway.
Oxygenation is optimal in p-ASW, where edge-on interactions are more abundant than in c-ASW or crystalline ice.

So, oxygenated PAHs could be formed in dense clouds with low water abundances or higher temperatures.

Our experimental results, MD/FF simulations and SCC-DFTB calculations provide input data (binding energies, barrier heights, ionisation potentials, dangling OH vibration mode) for astrochemical models of gas-grain interactions.

The higher sensitivity of future space missions (JWST) could detect dOH spectral feature and confirm wether PAHs are indeed frozen out onto icy grains in dense regions.

Thank you for your attention

Funding: PARCS project (ANR-13-BS08-005)

CNRS GDR EMIE 3533

CNRS (INSU-INP-INC) PN PCMI

