A Computational Study of the Reaction N(²D) + C₆H₆: Implications for the Upper Atmosphere of Titan

Marzio Rosi¹, Nadia Balucani², Leonardo Pacifici², Dimitrios Skouteris³, Adriana Caracciolo², Piergiorgio Casavecchia², Stefano Falcinelli¹

¹ Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
² Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
³ Master-Up, Perugia, Italy

The Physics and Chemistry of the Interstellar Medium
Palais des Papes, Avignon, France, 2-6 September 2019
Main constituents of the atmosphere of Titan: N_2 (>95%), CH_4 (1.4-4.9%), H_2, C_2H_6, C_2H_2, C_2H_4, HCN, HCCCN, C_2N_2, C_6H_6...
Global chemical scheme

EUV and energetic particles induce the formation of active forms of nitrogen (N^-, N^*, N_2^*, N^+, N_2^+). UV photons induce dissociation and ionization of methane. A very active chemistry begins, leading up to N-bearing macro-molecules and their ions.

Dissociation and successive reactions:
- C_2H_6
- HCN

Ionisation:
- $C_2H_5^+$
- HCNH$^+$
- CH_5^+
- $C_4N_5^+$

Benzene (C_6H_6)

Other Complex Organics (100~350 Da)

Negative Organic Ions (20~8000 Da)

aerosols

Titan
Nitrogen fixation by photochemistry in the atmosphere of Titan

Molecular nitrogen, the main component of the atmosphere of Titan, is characterized by a strong bond and is difficult to chemically fix in compounds.

The observation of nitriles in trace amounts indicates that some forms of active nitrogen are produced by several processes (e.g. EUV absorption, electron impact) \(\text{N, N}_2^+, N^+ \)

EUV (60<\(\lambda <82 \) nm) \& electron impact induced dissociation, dissociative ionization and \(\text{N}_2^+ \) dissociative recombinative produce \(N(4S) \) and \(N(2\text{D}) \) states in similar amounts. The excited \(2\text{D} \) state is metastable with a very long radiative lifetime (~ 48 h).

The generation of atomic nitrogen in the first electronically excited state, \(2\text{D} \), is extremely relevant in assessing the role of neutral nitrogen chemistry in the atmosphere of Titan because \(N(4S) \) atoms exhibit very low reactivity with closed-shell molecules and the probability of collision with an open-shell radical is small.
The excited 2D state is metastable with a very long radiative lifetime (~ 48 h) and a very high energy content (230 kJ/mol). In the upper atmosphere of Titan EUV & electron impact induced dissociation, dissociative ionization and N_2^+ dissociative recombination produce $N(^4S)$ and $N(^2D)$ states in similar amounts.

We have already investigated (2009-12) the reactions of $N(^2D)$ with the aliphatic hydrocarbons abundant in Titan, e.g., CH$_4$, C$_2$H$_6$, C$_2$H$_4$.

Lavvas et al., 2011
The excited 2D state is metastable with a very long radiative lifetime (~48 h) and a very high energy content (230 kJ/mol). In the upper atmosphere of Titan EUV & electron impact induced dissociation, dissociative ionization and N_2^+ dissociative recombination produce $N(^4S)$ and $N(^2D)$ states in similar amounts.

N(2D) production rate with altitude

Benzene mole fractions as a function of the altitude

Lavvas et al., 2011

Vuitton et al., 2018
benzene: widely detected (even as ice flakes in the stratosphere)

possible detection of pyridine by the Ion Neutral Mass Spectrometer onboard Cassini

From the ion densities at \(m/z = 80 \) and 94, we infer the presence of a few tenths of a ppm of \(\text{C}_5\text{H}_5\text{N} \) and \(\text{C}_6\text{H}_7\text{N} \) in Titan’s upper atmosphere. In their laboratory simulation, Thompson et al. (1991) observe the formation of 2 isomers of \(\text{C}_5\text{H}_5\text{N} \), penta-2,4-dienenitrile and 2-methylene-3-butenenitrile, the former being observed by Coll et al. (1999) as well. Both groups detect a \(\text{C}_6\text{H}_7\text{N} \) species, that Thompson et al. (1991) tentatively attribute to 2,4-hexadienenitrile. However, many other isomers are possible, including cycles such as pyridine (\(\text{C}_5\text{H}_5\text{N} \)) and aniline (\(\text{C}_6\text{H}_5\text{NH}_2 \)). Neither species has been detected in any extraterrestrial object. Clearly, new processes are required to explain their presence in Titan’s upper atmosphere.

Implications for prebiotic chemistry

Pyrimidines

Cytosine

Thymine (DNA Only)

Uracil (RNA Only)
Methods

- Electronic structure calculations of the relevant potential energy surface
- Microcanonical kinetics calculations
 - Capture theory
 - Rice-Ramsperger-Kassel-Marcus (RRKM) calculations
 - Master equation resolution
- Derivation of temperature-dependent rate coefficients through Boltzmann averaging
For the initial exothermic step the capture model is used. The essential assumption is that a successful capture has occurred if the centrifugal barrier can be overcome.
The RRKM scheme

Instead, the RRKM (Rice-Ramsperger-Kassel-Marcus) scheme is used for unimolecular intermediate steps. In the RRKM scheme for a unimolecular reaction, two assumptions are made:

- The available energy is distributed statistically among all available degrees of freedom
- The reaction proceeds through a transition state (no-recrossing assumption).
The RRKM scheme

Within these two assumptions, the unimolecular rate constant is given by the formula

\[k(E) = \frac{N(E)}{h \rho(E)} \]

where \(N(E) \) is the number of states in the transition state configuration below the energy \(E \), \(\rho(E) \) is the reactant density of states at the same energy and \(h \) is Planck’s constant.
And how about tunnelling?

We use the imaginary frequency of the transition state to **simulate** the height and width of the barrier to be crossed as an **Eckart barrier**.
The master equation

If our system includes more than one intermediates, then we must calculate (based on the initial abundances) the branching ratio between the various product channels.

This means including all possible rate constants for all possible reaction steps (forwards and backwards) and extrapolating time to the infinite future (where all possible intermediates have achieved their destiny and there is no turning back).
Boltzmann averaging

Having obtained rate constants for a sufficient range of energies, we proceed with Boltzmann averaging to convert energy to temperature information

\[k_c(T) = \frac{1}{q(T)} \int k_m(E) \times \rho(E) \times e^{-E/k_B T} \, dE \]

where \(q(T) \) is the reactant partition function at temperature \(T \) and \(\rho(E) \) is the reactant density of states at the energy \(E \).
N$(^2\text{D}) + \text{C}_6\text{H}_6 : \text{Computational details}

- Electronic structure calculations have been performed on the N$(^2\text{D}) + \text{C}_6\text{H}_6$ system using DFT calculations and employing the B3LYP functional in conjunction with the m-aug-cc-pVTZ basis set. Coupled cluster calculations have also been (just!) effected, which will permit higher accuracy.

- Energies, vibrational frequencies and rotational constants of all intermediates and transition states have been determined.
After the initial attack on the C₆H₆ ring, the N atom is attached to a C atom through a σ-bond. Subsequently there is a choice:

1. A C-C-N ring can be formed. After this, there can be a ring opening to form an overall seven-membered ring (six carbon atoms and one nitrogen atom) with a subsequent H expulsion. From the relative barrier heights, it can be understood why this is the major fate of the initial intermediate.

2. An H atom can be expelled to form phenylnitrene. Before the H atom expulsion, there is the possibility of a 1,2 H-migration.
Reaction mechanism and rates

• As it turns out, the formation of a seven-membered ring product is by far the dominant one. In fact, the formation of the ortho-product (n. 18 in the scheme) has a yield of 86-87% for all temperatures up to 300K.

• The corresponding para-product (n. 20 in the scheme) is the second most favoured one, with a yield of 7-8%.

• Finally, the formation of phenylnitrene (with or without an initial H atom migration) accounts only for 4-5% of the products.
• The predominant scenario is the formation of a seven-membered ring product (six carbon atoms and one nitrogen atom).
• The predominant scenario is the formation of a seven-membered ring product (six carbon atoms and one nitrogen atom).

• A minor product is phenylnitrene, formed by the expulsion of an H atom while the N atom is still σ-bonded to benzene.
CONCLUSIONS

• The predominant scenario is the formation of a seven-membered ring product (six carbon atoms and one nitrogen atom).

• A minor product is phenylnitrene, formed by the expulsion of an H atom while the N atom is still σ-bonded to benzene.

• Even though pyridine appears in the overall reaction scheme, its formation rate is far too low to be of any importance.
• The MASTER-UP SRL company

• Università degli Studi di Perugia
ACKNOWLEDGEMENTS

• The MASTER-UP SRL company
• Università degli Studi di Perugia

THANK YOU FOR YOUR ATTENTION!