Quantum chemistry computations as an interpretative and predictive tool for grain-induced astrochemical processes. The formamide formation case.

Albert Rimola albert.rimola@uab.cat

Departament de Química Universitat Autònoma de Barcelona

Celebrating the first 40 years of

Alexander Tielens' contribution to science:

The Physics and Chemistry of the Interstellar Medium

2 – 6 September 2019, Avignon

Molecular Diversity and Complexity in the Universe

Evolution of the molecular complexity goes hand-in-hand with the physical phases involved in the formation of Solar-type planetary systems

Caselli & Ceccarelli, Astron. Astrophys. Rev., 2012, 20, 1

Molecular Diversity and Complexity in the Universe

Evolution of the molecular complexity goes hand-in-hand with the physical phases involved in the formation of Solar-type planetary systems

Caselli & Ceccarelli, Astron. Astrophys. Rev., 2012, 20, 1

A Utility of Quantum Chemical Simulations: Characterization of Potential Energy Surfaces (PES)

Quantum chemistry computations as an interpretative and predictive tool for grain-induced astrochemical processes. The formamide formation case.

Formamide Formation: NH₂ + HCO reaction

BHLYP/6-311++G(d,p) Potential Energy Surface (PES) including zero-point energy (ZPE) corrections Energy units in kJ/mol (1 kJ/mol ≈ 120 K)

Formamide Formation: NH₂ + HCO reaction

BHLYP/6-311++G(d,p) Potential Energy Surface (PES) including zero-point energy (ZPE) corrections Energy units in kJ/mol (1 kJ/mol ≈ 120 K)

Formamide Formation. HCN + H₂O

٠

- Ice mixture of H₂O:HCN
- Progressive warm: 40 K \rightarrow 180 K
 - No reaction between H₂O and HCN: desorption of the ice components before reactivity

Danger et al., PCCP, 16, 3360 (2014)

Formamide Formation. CN + H₂O . Mechanistic Proposal

Formamide Formation. CN + H₂O . Energy Profile

Formamide Formation. CN + H₂O . Final Step

Formamide Formation. CN + H₂O . Water as Catalyst

Conclusions

Take home message

 Quantum chemistry has great potentialities to be used as both an interpretative and a predictive tool in Astrochemistry

NH₂CHO Formation:

- NH_2 + HCO reaction on H_2O water ice mantles: NH_2CHO vs NH_3 +CO. Importance of the relative orientation of the initial reactants.
- Dissociation of HCN and subsequent reaction of CN with H₂O ice can be a plausible grain surface reaction for NH₂CHO formation.
- Dual role of H₂O ice: reactant and catalyst

Acknowledgements

Piero Ugliengo Università di Torino

Cecilia Ceccarelli Institut de Planétologie et d'Astrophysique de Grenoble

Nadia Baluccani Università di Perugia

Dimitris Skouteris Scuola Normale Superiore di Pisa

Catalan Supercomputer Center

2017SGR-1323 Catalan Government

Ramón y Cajal contract CTQ2017-89132-P Spanish Government

Supercomputer time

Funding organisms

Quantum chemistry computations as an interpretative and predictive tool for grain-induced astrochemical processes. The formamide formation case.

Albert Rimola albert.rimola@uab.cat

Departament de Química Universitat Autònoma de Barcelona

Celebrating the first 40 years of

Alexander Tielens' contribution to science:

The Physics and Chemistry of the Interstellar Medium

2 – 6 September 2019, Avignon