Desorption of volatile molecules from interstellar carbonaceous dust analogs

<u>Belén Maté</u>, Isabel Tanarro, Miguel Jiménez-Redondo, Ramón Peláez, Vicente Timón, Víctor J. Herrero

Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006, Madrid, Spain

• Hydrogenated amorphous carbon as ISM dust analogs

- N₂,CO, CH₄ and CO₂ desorption from dust analogues
- Summary

Plasma generation of interstellar dust analogs

Inductive RF discharge

He, 10 sccm CH₄, 5 sccm P_{tot}, 0.27 mbar 40 W t_{dep}, 8 min Al substrate

Peláez et al., 2018, Plasma Sources Sci. Technol.

Capacitive RF discharge

Ar, 5 sccm C_2H_2 , 2 sccm P_{tot} , 0.31 mbar 15 W Modulation: 15 s On/ 6 s Off t_{dep} , 80 min Al substrate

HAC2

SEM shows agglomeration of ~150 nm diameter dust particules

IR spectra: comparison with observations

Thermal programmed desorption of N_2 , CO, CH₄ and CO₂ from HAC

covered with HAC

- Turbomolrcular pump: S=700 l s⁻¹ for N₂
- He closed cycle cryostat: 15-300 K
- Precision leak valve : down to 10⁻¹⁰ mbar l s⁻¹
- Base pressure, $P_{b} \approx 1 \; 10^{\text{-10}} \; \text{mbar}$

5

TPD spectra of volatiles from HAC

- Desorption rate proportional to QMS signal (τ_{res}=(V/S) ≈ 10 ms)
- Heating ramp, β = 20 K/min
- $I_{QMS}(t) \rightarrow I_{QMS}(T)$

Study of sub-monolayer coverages, (black trace, $\approx 1 \text{ ML}$)

Maté et al., 2019 MNRAS, submitted

Desorption energy: inversion analysis

Aromatic and aliphatic surface sites

a) H. Ulbricht et al. 2006 Carbon, 44, 2931. Redhead analysis, recalculated with $v = 10^{13} s^{-1}$ b) R. S. Smith et al. 2016, JPC B, 120, 1979. Inversion analysis. Average of energy distribution

Aromatic and aliphatic surface sites: DFT calculations

Aliphatic site

Aromatic site

EXPERIMENTAL, E_d(kJ/mol)

graphite	HAC2 _B	HAC2 _A	HAC1
Ulbrich07			
14.4	14.7	10.8	11.2

CALCULATIONS, E (kJ/mol) (this work, preliminary)

aliphatic	aromatic	graphite
site	site	
8.6	16.7	14.5

Surfaces from HAC solids described in Molpeceres et al. 2017, PCCP.

Comparison with other astrophysical relevant surfaces

Surface	Ed(kJ/mol) (pre-exp. factor)	Reference	Ed averaged
HAC1	10.3 ± 0.2 (10 ¹³ s ⁻¹)	this work	
HAC2	10.6 ± 0.2 (10 ¹³ s ⁻¹)	this work	
graphene	12.5 (1.9x10 ¹³ s ⁻¹)	Smith et al. 2016, JPC P	
HOPG	13 ± 1 (6x10 ¹⁴ s ⁻¹)	Ulbricht et al. 2006, Ed	(carb. dust)
graphite	11	Vidali et al. 1991, S	~
SiO _x	7.2 (10 ¹² s ⁻¹)	Noble et al. 2012, M	
SiO _x	7.3 ± 0.2 (10 ¹² s ⁻¹)	Collings et al. 2015, r	م (ASW)
Mg ₂ SiO _x	9.3 ± 0.1 (10 ¹² s ⁻¹)	Suhasaria et al. 2017,	
ASWcryst	7.2 (10 ¹² s ⁻¹)	Noble et al. 2012, N	
ASWnp	8.4 (10 ¹² s ⁻¹)	Noble et al. 2012, N Ed	(silic. dust)
ASWnp	11.8 (3.5x10 ¹⁶ s ⁻¹)	Smith et al. 2016, J	0.0
ASWnp	8.1 (10 ¹² s ⁻¹)	He et al. 2016, ApJ.	8.9
ASWnp	9.7 (7.1x10 ¹¹ s ⁻¹)	Fayolle et al. 2016, ApJL	
ASWp	8.6 (10 ¹² s ⁻¹)	He et al. 2016, ApJ.	

- Two HAC samples, taken as interstellar dust analogs, have been produced in plasma reactors. HAC1: film (mostly aliphatic structure). HAC2: aglomeration of dust particles (both aliphatic and aromatic structures).
- TPD experiments of N₂, CO, CH₄ and CO₂ from the two carbonaceous solids were performed. The TPD spectra from the aliphatic film present just one maximum whereas those from the aliphatic/aromatic dust sample have a maximum and a shoulder.
- The comparison with literature values suggests that the interaction of volatiles with the aromatic structures is stronger than with the aliphatic part of the solids.

• In general, interactions of volatiles with carbonaceous surfaces seem stronger than with other surfaces relevant in interstellar grains like water-ice or silicate analogs.

Thank you for your attention

http://www.iem.cfmac.csic.es/fismol/fmap/

Funding: ERC-2013-Syg 610256, NANOCOSMOS and FIS2016-77726-C3-1-P

European Research Council

Established by the European Commission

