

Molecular Complexity in

Solar-Type Star Forming Regions

B. Lefloch

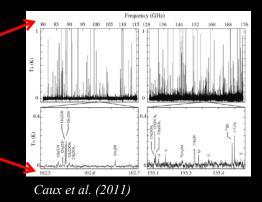
on behalf of the DOC Team Institute of Planetology and Astrophysics of Grenoble (France)

The Beginning

THE ASTROPHYSICAL JOURNAL, 593:L51-L55, 2003 August 10 © 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE HOT CORE AROUND THE LOW-MASS PROTOSTAR IRAS 16293-2422: SCOUNDRELS RULE!

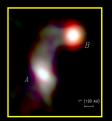
S. CAZAUX,¹ A. G. G. M. TIELENS,^{1,2} C. CECCARELLI,³ A. CASTETS,⁴ V. WAKELAM,⁴


E. CAUX,⁵ B. PARISE,⁵ AND D. TEYSSIER² Received 2003 March 24; accepted 2003 June 26; published 2003 July 9

ABSTRACT

While warm dense gas is prevalent around low-mass protostars, the presence of complex saturated molecules—the chemical inventory characteristic of hot cores—has remained elusive in such environments. Here we report the results of an IRAM 30 m study of the molecular composition associated with the low-mass protostar IRAS 16293–2422. Our observations highlight an extremely rich organic inventory in this source with abundant amounts of complex O- and N-bearing molecules such as formic acid, HCOOH, acetaldehyde, CH₃CHO, methyl formate, CH₃OCHO, dimethyl ether, CH₃OCH₃, acetic acid, CH₃COOH, methyl cyanide, CH₃CN, ethyl cyanide, C₂H₃CN, and propyne, CH₃CCH. We compare the composition of the hot core around this low-mass young stellar object with those around massive protostars and address the chemical processes involved in molecular complexity in regions of star formation.

Subject headings: ISM: abundances - ISM: individual (IRAS 16293-2422) - ISM: molecules - stars: formation



Key Questions

IRAS16293-2422: TIMASS, PILS : What else ?

What molecular complexity can be reached in low-mass SFRs ? Chemical differentiation: Low/High-Mass ? Other ?

When, Where, How do Complex Organic Molecules form ?

Which heritage of the earliest phases ?

Molecular Complexity - Avignon - 2019

The IRAM Large Program ASAI

(Astrochemical Surveys At IRAM)

<u>Goals:</u>

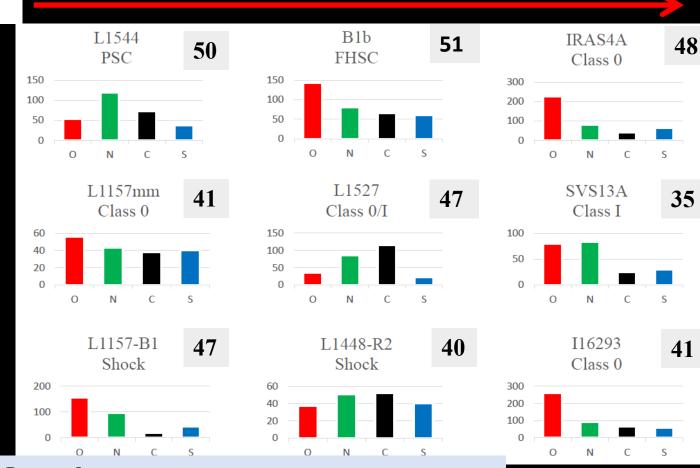
- Evolutionary view on chemistry along Solar-type Star Formation path:
- Influence of environmental conditions: feedback processes

Unbiased spectral line surveys from 70 to 280GHz: 400 hrs (Lefloch et al. 2018)

ASAI Source Sample: 10 templates illustrative of the different chemical stages of a sun-like protostar

Sources	Coordinates (J2000)	d (pc)	Lum. (L_{\odot})	3 mm (mK)	2 mm (mK)	1.3 mm (mK)	δu (kHz)	Comment
TMC1	$04^{h}41^{m}41.90^{s} + 25°41'27.1''$	140	_	_	4.2 - 4.2	-	48.8, 195.3	Early prestellar core
L1544	$05^{h}04^{m}17.21^{s} + 25^{\circ}10'42.8''$	140	_	2.1 - 7.0	-	-	48.8	Evolved prestellar core
B1b	$03^h 33^m 20.80^s + 31^{\circ} 07' 34.0''$	230	0.77	2.5 - 10.6(*)	4.4 - 8.0	4.2 - 4.6	195.3	First Hydrostatic Core
L1527	$04^{h}39^{m}53.89^{s} + 26^{\circ}03'11.0''$	140	2.75	2.1-6.7(*)	4.2 - 7.1	4.6 - 4.1	195.3	Class 0 WCCC
IRAS4A	$03^{h}29^{m}10.42^{s} + 31^{\circ}13'32.2''$	260	9.1	2.5 - 3.4	5.0 - 6.1	4.6 - 3.9	195.3	Class 0 Hot Corino
L1157mm	$20^{h}39^{m}06.30^{s} + 68^{\circ}02'15.8''$	250	3	3.0 - 4.7	5.0 - 6.5	3.8 - 3.5	195.3	Class 0
SVS13A	$03^{h}29^{m}03.73^{s} + 31^{\circ}16'03.8''$	260	34	2.0 - 4.8	4.2 - 5.1	4.6 - 4.3	195.3	Class I
AB Aur (†)	$04^{h}55^{m}45.84^{s} + 30^{\circ}33'33.04''$	145	_	4.6 - 4.3	4.8 - 3.9	2.1 - 4.3	195.3	protoplanetary disk
L1157-B1	$20^{h}39^{m}10.20^{s} + 68^{\circ}01'10.5''$	250	_	1.1 - 2.9	4.6 - 7.2	2.1 - 4.2	195.3	Outflow shock spot
L1448-R2	$03^{h}25^{m}40.14^{s}$ +30 °43'31.0"	235	_	2.8 - 4.9	6.0 - 9.7	2.9 - 4.9	195.3	Outflow shock spot

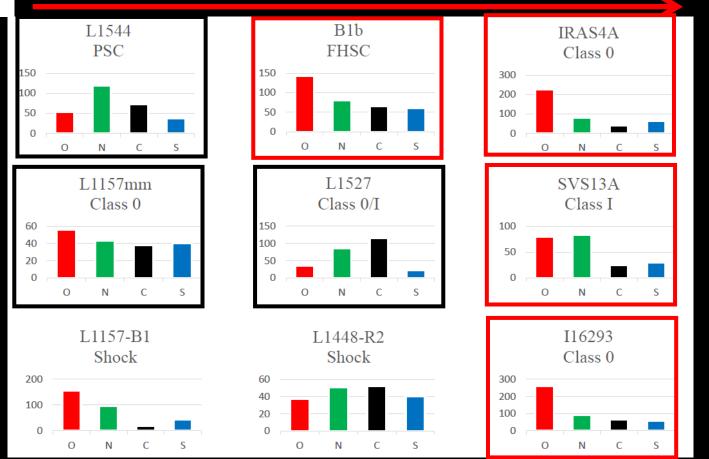
Time



Molecular census

> 98% of lines (5 σ) are identified

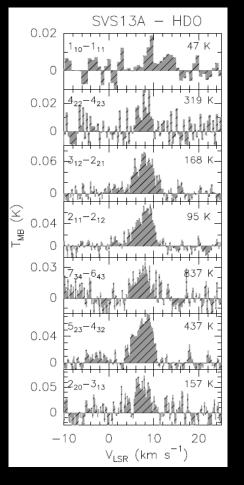
$\begin{array}{c} 2 \\ \mathbf{H}_2 \\ \mathbf{A}\mathbf{IF} \\ \mathbf{A}\mathbf{ICI} \\ \mathbf{C2} \\ \mathbf{CH} \\ \mathbf{CH}^+ \\ \mathbf{CN} \\ \mathbf{CO} \\ \mathbf{CO}^+ \\ \mathbf{CP} \\ \mathbf{CSi} \\ \mathbf{HCI} \end{array}$	3 C ₃ C ₂ H C ₂ O C ₂ S CH ₂ HCN HCO HCO ⁺ HCO ⁺ HOC ⁺ HOC ⁺ H ₂ O H ₂ S	4 c-C ₃ H I-C ₃ H C ₃ N C ₃ O C ₃ S C ₂ H ₂ NH ₃ HCCN HCNH ⁺ HNCO HNCS HOCO ⁺	5 C ₅ C ₄ H C ₄ Si I-C ₃ H ₂ c-C ₃ H ₂ CH ₂ CN CH ₄ HC ₃ N HC ₂ NC HCOOH H ₂ CNH H ₂ C ₂ O	6 C ₅ H I-H ₂ C ₄ C ₂ H ₄ CH ₃ CN CH ₃ NC CH ₃ OH CH ₃ SH HC ₃ NH ⁺ HC ₂ CHO NH ₂ CHO C ₅ N I-HC ₄ H	7 C ₆ H CH ₂ CHCN CH ₃ C ₂ H HC ₅ N CH ₃ CHO CH ₃ NH ₂ c-C ₂ H ₄ O CH ₂ CHOH C ₆ H ⁻ CH ₃ NCO	8 CH ₃ C ₃ N HCOOCH ₃ CH ₃ COOH C ₇ H C ₆ H ₂ CH₂OHCHO I-HC ₆ H CH ₂ CHCHO CH ₂ CCHCN NH ₂ CH ₂ CN CH ₃ CHNH	9 CH ₃ C ₄ H CH ₃ CH ₂ CN (CH ₃) ₂ O CH ₃ CH ₂ OH HC ₇ N C ₈ H CH ₃ CONH ₂ C ₈ H ⁻ C ₃ H ₆	10 CH ₃ C ₅ N (CH ₃) ₂ CO (CH ₂ OH) ₂ CH ₃ CH ₂ CHO CH ₃ CHCH ₂ O CH ₃ OCH ₂ OH	11 HC ₉ N CH ₃ C ₆ H C ₂ H ₅ OCHO CH ₃ OCOCH ₃	12 13 C ₆ H ₆ c-C ₆ H ₅ CN C ₂ H ₅ OCH ₃ HC ₁₁ N i-C ₃ H ₇ CN n-C ₃ H ₇ CN
KCl	HNC	H ₂ CO	H ₂ NCN	l-HC ₄ N						
NH	HNO	H ₂ CN	HNC ₃	c-H ₂ C ₃ O						
NO NS	MgCN MgNC	H ₂ CS H ₃ O ⁺	SiH4 H ₂ COH ⁺	H ₂ CCNH C ₅ N ⁻						
NaCl	N_2H^+	r_{30} c-SiC ₃	C_4H^-	HNCHCN						
OH	N ₂ O	CH ₃	HCOCN	moment						
PN	NaCN	C_3N^-	HNCNH		No CO	Ms larger	than glyco	laldehyde	dimethyl e	ther, ethanol
SO	OCS	PH ₃	CH ₃ O			•	than gryco	laidellyde,	unnennyre	and, culturol
SO ⁺	SO ₂	HCNO	NH_4^+		Comple	ete census				
SiN	c-SiC2	HOCN	H_2NCO^+							
SiO	CO_2	C_3H^+			First S-	bearing C	OM detect	ed in low-r	nass SFRs	: CH ₃ SH
SiS	NH_2	HMgNC				-				Majumdar et al. 2016)
CS HF	H3 ⁺ SiCN	HSCN			D 1	• • •	D 1	1 1 1 1 1	C	1 0 1 1
HD	AINC				Prebiot	ic chemist	ry: P-, gly	colaldehyd	e, tormam	ide, formic acid
FeO?	SiNC									0.11
O ₂	ССР									$C_x H_y$
CF^+	AlOH									$C_x H_y O_z$ $C_x H_y O_z N_t$ $C_x H_y O_z N_t S_u$
SiH	H_2O^+									CXIIYOZ
PO	H_2Cl^+									$C_{v}H_{v}O_{7}N_{1}$
AlO,	KCN				Malacul	ar Complovity	- Avignon - 201	10		
OH ⁺ , CN ⁻	FeCN				worecu	al complexity	- Avignon - 20.	19		$C_x H_y O_z N_t S_u$
CN-	HO_2									,


ASAI sample Number of *detected* molecular species : 35 - 51Number of molecular lines : 178 - 413 (σ = 5-12 GHz⁻¹) Molecular richness is mainly independent of L₀

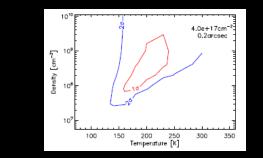
Chemical Classes

Time

r= N(O)/N(C) = 1 defines two chemical classes:O-rich : hot corino sources : r= O/C > 1.5C-rich : WCCC: r= O/C < 1.5


SVS13A : hot corino L1157-mm : WCCC

IVIOIECUIAI COMPLEXILY - AVIGNOM - 2019



Hot Corinos in the Class I stage

Strong deuteration around Class I SVS13A

Deuterated water emission from a small (25AU) region of dense and hot gas around the protostar

HDCO, D₂CO and CH₂DOH detected !

Molecular deuteration is lower by a factor of 10 to 100 in the Class I hot corino

SVS13A in

NGC1333

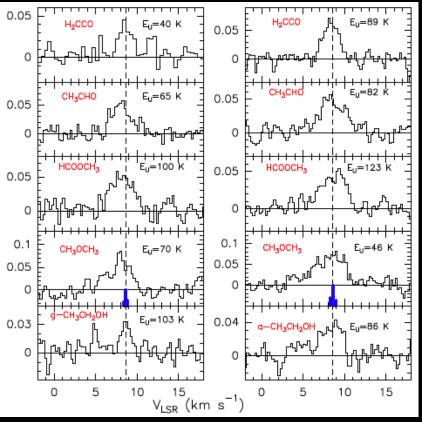
Bianchi et al. (2017) Codella et al (2016)

Hot Corinos in the Class I stage

See poster by Eleonora Bianchi

L1157-B1

SVS13A in


NGC1333

IRAS16293

[HCOOCH₃]/[CH₃CH₂OH]

SVS13-A

COMs around SVS13A

Bianchi et al. (2019)

Same relative abundances as in hot corinos from Class 0

Hot gas (Trot > 45 K)

Size : 0.3" (PdBI)

[CH₃OCH₃]/[CH₃OH

0

L1157-B1

IRAS16293

High abundances: (0.1 - 1)(-8)

IRAS03245

SVS13-A

200

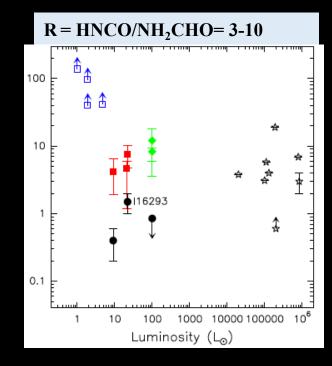
100

10⁰

 10^{-1}

10⁻²

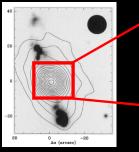
10⁻³

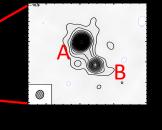

Prebiotic Molecules: NH₂CHO

The most simple amide and a molecule of prebiotic interest (Saladino et al. 2012) A search for NH_2CHO (and HNCO) in the different stages of protostellar evolution

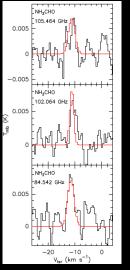
Lopez-Sepulcre et al. (2015)

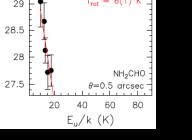
ASAI: Search for NH ₂ CHO in solar-type environments									
	Source	d (pc)	M (M _{\odot})	$L_{ m bol} \ ({ m L}_{\odot})$	Туре				
	TMC1	140	21		PSC - young				
	L1544	140	2.7	1.0	PSC - evolved				
Not detected	B1	200	1.9	1.9	Class 0 - early				
	L1527	140	0.9	1.9	Class 0, WCCC				
	L1157-mm	325	1.5	4.7	Class 0, WCCC?				
	IRAS 4A	235	5.6	9.1	Class 0, HC				
	SVS 13A	235	0.34	21	Class $0/1$				
Detected	OMC-2 FIR 4	420	30	100	IM proto-cluster				
	Cep E	730	35	100	IM protostar				
	L1157-B1	250	—	—	outflow shock				


NH₂CHO is detected only in hot corinos sources and shocks

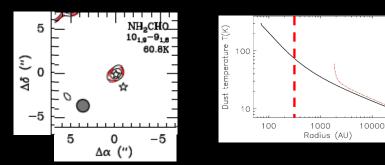


Is there a link between HNCO and NH₂CHO ?


NH₂CHO and HNCO in CepE-mm

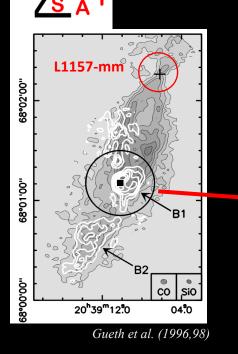

CepE-mm : L= $100 L_{sun}$ $M=2-5 M_{sun}$ d= 730 pc

IRAM 30m: Cold Envelope

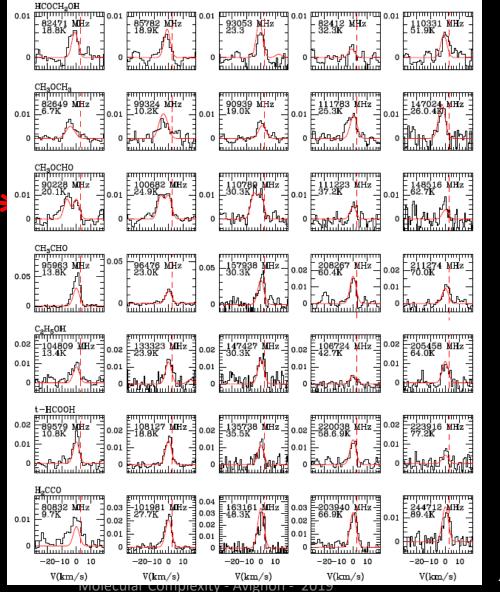


29.5 $N = 5(3) \times 10^{14} \text{ cm}^{-1}$ $T_{rot} = 6(1) K$ 29 28.5 28 NH2CHO 27.5 $\theta = 0.5 \text{ arcsec}$ 20 40 60 80 E.,/k (K)

Lopez-Sepulcre et al. (2015)

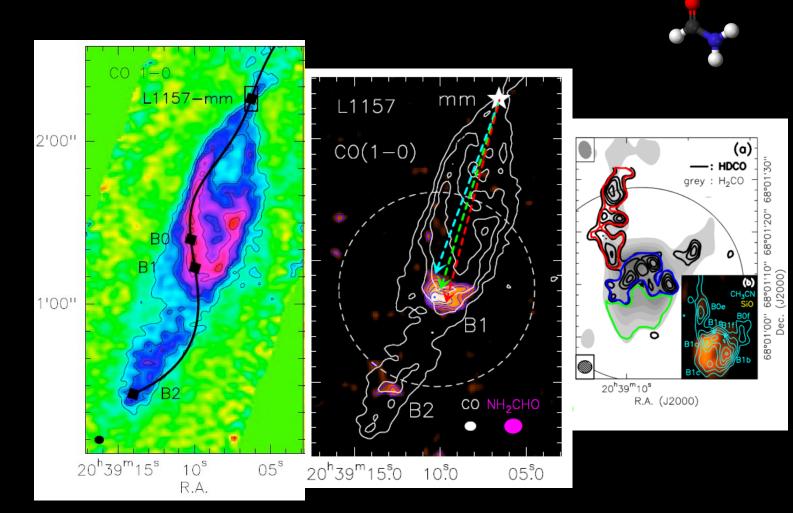

NOEMA (1.4"): Hot Corino

Low Excitation: Trot=6K $X(NH_2CHO) = (4 + - 2) \times 10^{-12}$ $HNCO/NH_2CHO=3$


Size (FWHM) = 0.7" = 510 AUTd = 70 - 100K $X(NH_2CHO) = 5 \times 10^{-10}$ $HNCO/NH_2CHO=3$

Shocks as Laboratories for COMs

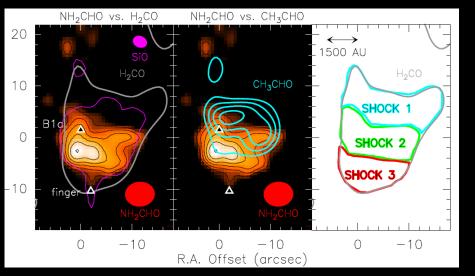
- NH₂CHO, CH₃CN, C₂H₃CN, HC₅N - CH₃SH


Similar abundances: X = (2-5)% X[CH₃OH]

CH₂OHCHO CH₃OCH₃ CH₃OCHO CH₃CHO C₂H₅OH НСООН H₂CCO

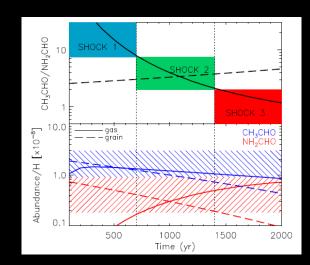
Lefloch et al. (2017)

Shocks as Laboratories for COMs



(Codella et al.2017)

New insight with SOLIS



(Codella et al.2017)

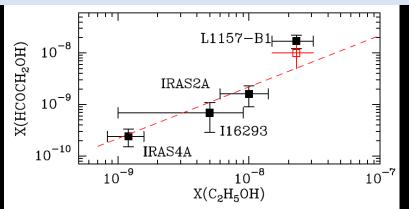
NH₂CHO is detected in the older shock #3 Spatial distribution matches with SiO does not match with HDCO

> NH₂CHO: Formation route

Sputtering from grain mantles (dashed)

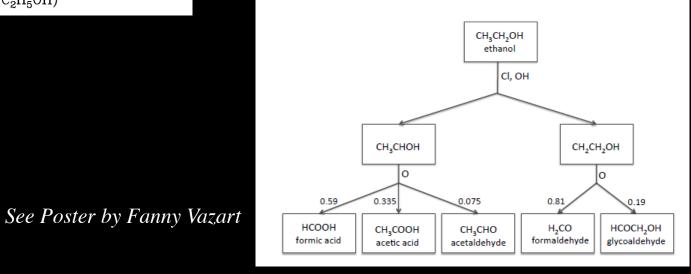
Gas phase (solid)

 $NH_2 + H_2CO \rightarrow NH_2CHO + H$


Barone et al. (2015)

Gas phase formation route is favored

Molecular Complexity - Avignon - 2019


Linear correlations: a common origin ?

Which formation route for glycolaldehyde ? Grain surface ($CH_3OH + HCO$) ? Gas phase ($H_2CO^+ + H_2CO$) ?

Woods et al. (2012, 2013)

A New Scheme: The Ethanol Tree (Skouteris et al. 2017)

Summary and Future Prospects

Molecular Complexity

- is already present in the earliest phases of star formation
- is quite similar between low- and high-mass SFRs (N-chem.diff. ?)

Chemical differentiation is observed at large and small scales: why ?

Feedback processes (shocks) are important and drive a rich chemistry. They are true laboratories to characterize molecule formation pathways.

NOEMA and ALMA are opening a new window on Molecular Complexity.

A pluridisciplinary approach combining observations, laboratory exp. and modelling is needed to understand the chemical evolution of protostellar envelopes.

Thanks

With the help of the DOC Team and all the ASAI team collaborators for this fantastic and so successful journey

C. Kahane, C. Ceccarelli, J. Cernicharo, C. Codella, A. Fuente, A. Lopez-Sepulcre, C. Vastel, E. Caux, M. Tafalla, E. Bianchi, P. Caselli, A. Gomez-Ruiz, P. Hily-Blant, J. Holdship, I. Jimenez-Serra, E. Mendoza, J. Ospina-Zamudio, S. Pacheco, L. Podio, E. Roueff, N. Sakai, B. Tercero, P. de Vicente, S. Viti, S. Yamamoto, K. Yoshida, T. Monfredini, H. Quitian