The Orion Bar: from ALMA to new PDR models

Javier R. Goicoechea IFF-CSIC, Madrid

Jerome Pety (IRAM, Grenoble) Sara Cuadrado (IFF-CSIC, Madrid) Emeric Bron (Obs. de Paris)

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Most neutral ISM is permeated by far-UV photons E < 13.6 eV from massive stars \rightarrow PDR emission dominates

G₀ ≈ 1 Low FUV irradiation Diffuse interstellar clouds

High FUV irradiation Cloud surfaces close to clusters

 $G_0 \approx 10^2 - 10^5$

AU Irradiated protoplanetary disks (proplyds)

kpc Star-forming galaxies

PDR models explain "most" of the neutral ISM

Penetration of stellar FUV photons into neutral clouds

Heating and cooling Excitation & gas chemistry H/H₂ C⁺/C/CO

Grain surface chemistry Dynamics, time-dependence 2D, 3D ...

80's

Stationary PDR codes: Tielens & Hollenbach 85; van Dishoeck & Black 86; Wolfire+90; Le Bourlot+93; Hogerheijde+95; Abel+05; Sternberg & Dalgarno 95; Le Petit+06; Bell+06; Röllig+06, Bisbas +15, Esplugues +16; Andree-Labsch +17 ...

The Orion Bar PDR (in the 90s)

Physics & structure of a HII region/cloud interface

Tielens et al. 1993 Science

Separated H/H₂ and C⁺/CO fronts ($A_v \sim 2$) ($A_v \sim 4$)

Orion Bar a strongly FUV-irradiated PDR harsh environment but peculiar chemistry

- C⁺, S⁺, ... ions and H, O, ... atoms
- e⁻ and vibrationally excited H₂^{*}
- Reactive ions (CH⁺, SH⁺, ...)
- PAHs and COMs' isomers (cis-HCOOH, ...)

Orion Bar Chemistry: Jansen +95, Young+00; Fuente +03; Simon+97; Marconi+98; Allers+05; van der Wiel +09; Habart+10 Goicoechea +11,+17; van der Tak+12,+13; Cuadrado +15,+16, +17; Nagy+13+17, Faure+17; Putaud+19 and many others

1D stationary Meudon PDR code

Isobaric $P_{th} / k \simeq 10^8 \text{ K cm}^{-3}$ $G_0 \simeq 3.10^4$

Distance to Orion

Steep gradients in physical conditions and abundance profiles

Sharp physical and chemical gradients in PDRs at <u>small</u> scales \rightarrow 414 AU \approx 1" in Orion $\rightarrow \Delta A_V \sim 1 \text{ mag} @ 10^6 \text{ cm}^3 \rightarrow \text{ALMA & JWST}$

(sub)mm: polar molecules

Mid-IR: H₂ & PAHs

The Orion Bar today ...

1" resolution

Trapezium cluster -

×

- VLT (ionized gas, $T_{\rm e}$ ≈ 10,000 K)

ALMA (molecular gas, $T \approx 200-300$ K)

Goicoechea et al. 2016, Nature

HCO⁺ 4-3 (ALMA)

PAHS (8.0um, Spitzer/IRAC ~2")

onized front (OI 1.3um, NTT ~0.6"; Walmsley+2000)

H/H₂ and C⁺/CO transition zones seem much closer to each other than (30 years of) PDR model predictions !!

Small-scale density and temperature structures at the cloud edge

DF = H₂ dissociation front **IF** = lonization front

Small-scale density and temperature structures at the cloud edge

Ridge of high-pressure substructures very close to DF $P_{th}/k \approx n_{H} \cdot T_{k}$ a few 10⁸ cm⁻³ K

DF = H₂ dissociation front **IF** = lonization front Photoevaporative gas flows ?

Small-scale density and temperature structures at the cloud edge

DF = H₂ dissociation front **IF** = lonization front

Vertically averaged line-intensity crosscuts perpendicular to the Bar

Periodic density peaks (every ~5") Cloud edge compressed (x 5-30) by a high-pressure wave moving into the molecular cloud ? OR gas density instabilities ?

Fully sampled **high-J CO** maps Herschel/PACS Parikka, Habart +2018

SOFIA

Herschel

Far-IR high-J CO at >10" resolution

Stationary 1D PDR models: Emission comes from a thin layer at high thermal pressure P_{th} ~10⁸ K cm⁻³

Model fits many H₂, high-J CO, CH⁺, OH lines, ... **"Isobaric PDR" interpretation**

See also Allers +05 for H_2 lines at constant pressure

12

Randomly distributed clumps, fractal ISM 3D stationary-PDR model (kosma-tau) Stutzki+88 Andree-Labsch, Ossenkopf-Okada, Röllig+17

"Clump + interclump" interpretation

- C⁺ ... mostly from low density interclump - High-J CO, ... lines from small (mpc) dense clumps

~10% of material is in small & very dense (~10⁷ cm⁻³) clumps Tauber & Goldsmith 90; Burton +90; Meixner & Tielens 93; Parmar +91; Hogerheijde+95, Störzer+95; Young-Owl+00; Lis & Schilke 03 ...

Topology of the ISM ??

Very small (~mpc) clumps can quickly photoevaporate or rocket out Gorti & Hollenbach+02

Photoevaporating PDRs (dynamic & time-dep.)

Hydro-PDR model: 1D hydrodynamics, EUV/FUV, time-dependent thermo and chemistry

Bron et al., A&A

Previous non-stationary PDR dynamical models:

Bertoldi & Draine 96; Lefloch & Lazareff 94; Storzer & Hollenbach 98; Gorti & Hollenbach 02; Hosokawa & Inutsuka 05, 06; Bisbas +15

Photoevaporating PDRs

PDR compressed layers are roughly isobaric

→ 1D Stationary isobaric PDR models do better than "*classical*" constant-density PDR models

Density contrast between atomic (C⁺) and compressed molecular layers (high-J CO, CH⁺, ...) \rightarrow Don't need to invoke a small clump + interclump scenario of a PDR

Photoevaporating PDR models predict the observed $G_0 - P_{th}$ correlation

Bron+2018, Predictions from hydro PDR model

Joblin+2018, Wu+2018 Multi-molecule, multi-line observations of Galactic PDRs

Merged H/H_2 and $C^+/C/CO$ transitions in the Orion Bar

Maria S. Kirsanova^{1*}, Dmitri S. Wiebe¹ ¹Institute of Astronomy, Russian Academy of Sciences, 48 Pyatnitskaya St. 119017, Moscow, Russia

MNRAS, 2019

PDR structure

Other recent dynamical-PDR developments...

Line intensities

- 1D time-dependent, dynamical, thermo-chemical code (only FUV, no EUV)
- FUV heat the gas \rightarrow compression and high $P_{\rm th}$ neutral layer

Later times

Early times

A&A 625, L3 (2019) https://doi.org/10.1051/0004-6361/201935556 © ESO 2019

Letter to the $E\mathrm{D}\mathrm{i}\mathrm{t}\mathrm{o}\mathrm{r}$

Direct estimation of electron density in the Orion Bar PDR from mm-wave carbon recombination lines*

S. Cuadrado¹, P. Salas², J. R. Goicoechea¹, J. Cernicharo¹, A. G. G. M. Tielens², and A. Báez-Rubio³

Narrow line-profiles, as molecular lines \rightarrow They arise from the C⁺/C/CO transition and not from the HII region

IRAM 30m telescope

See also: Natta, Walmsley, Tielens 94, Wyrowski +97

Role of electrons Orion Bar PDR

- Excitation models for [¹³CII]158 μ m and CRRLs developed in Leiden (Salgado +17)
- $n_e = 60-100 \text{ cm}^{-3}$ and $T_e = 500-600 \text{ K}$ toward the H₂ dissociation front position.
- If $x_e \leq x(C^+) = 1.4 \cdot 10^{-4}$ then $P_{th} \geq (2-4) \cdot 10^8 \text{ cm}^{-3} \text{ K}$ without using molecular tracers.

Take home message

- Massive stars drive the evolution of the ISM through **UV, winds & SNe explosions → feedback**
- Stellar FUV radiation heats the neutral gas, induces dynamical effects, and triggers a specific chemistry → PDRs everywhere, at all spatial scales
- Exciting times.. New generation models and observations (SOFIA, ALMA, JWST, etc.) ...

... projects in which Xander will be involved - I suspect.

... as future President of Chile to get ALMA time ??

Goicoechea et al. 2016, Nature