# From Astrochemistry to Astrobiology?

A few selected papers on cosmic ices evolution

# Louis L.S.d'Hendecourt<sup>1,2</sup>

<sup>1</sup>Team ASTRO-PIIM, <sup>2</sup>CNRS, Aix Marseille Université, France



2/6 Sept. 2019

#### Model Calculations of the Molecular Composition of Interstellar Grain Mantles

A. G. G. M. Tielens\* and W. Hagen\*\*

Laboratory Astrophysics Group, Rijksuniversiteit, 2300 RA Leiden, The Netherlands

Received February 1, accepted May 19, 1982

## AGAIN!

## Time dependent chemistry in dense molecular clouds

#### I. Grain surface reactions, gas/grain interactions and infrared spectroscopy

#### L.B. d'Hendecourt <sup>1, 2</sup>, L.J. Allamandola <sup>1, 3</sup>, and J.M. Greenberg <sup>1</sup>

<sup>1</sup> Laboratory Astrophysics, Huygens Laboratorium, Wassenaarseweg 78, NL-2300 RA Leiden, The Netherlands

<sup>2</sup> Groupe de Physique des Solides de l'ENS, T23, 4 Place Jussieu, F-75251 Paris Cedex 05, France

<sup>3</sup> NRC Senior Associate, NASA Ames Research Center, Mail Stop 245/6, Moffett Field, CA 94035, USA

Received June 21, 1984; accepted May 21, 1985

#### Time-dependent chemistry in dense molecular clouds

#### II. Ultraviolet photoprocessing and infrared spectroscopy of grain mantles

L.B. d'Hendecourt<sup>1,2</sup>, L.J. Allamandola<sup>1,3</sup>, R.J.A. Grim<sup>1</sup>, and J.M. Greenberg<sup>1</sup>

<sup>1</sup> Laboratory Astrophysics, Huygens Laboratorium, Wassenaarseweg 78, NL-2300 RA Leiden, The Netherlands

<sup>2</sup> Groupe de Physique des Solides de l'E.N.S., T23, 4 Place Jussieu, F-75251 Paris Cedex 05, France

<sup>3</sup> NRC Senior Research Associate, NASA Ames Research Center, Mail Stop 245/6, Moffett Field CA 94035, USA

Received May 17, accepted September 16, 1985

## **Revisiting History? the Greenberg's group (1977)**



Courtesy Lou Allamandola (08/2019)

# From Astrochemistry to Astrobiology?

A few selected papers on cosmic ices evolution

# Louis L.S.d'Hendecourt<sup>1,2</sup>

<sup>1</sup>Team ASTRO-PIIM, <sup>2</sup>CNRS, Aix Marseille Université, France



2/6 Sept. 2019

#### THE CYCLE OF SOLID STATE MATTER IN THE GALAXY



## Molecules detected in the ISM gas (2010)

| 2                                            | 3                                                                            | 4                  | 5                               | 6                                 | 7                                 | 8                                  | 9                                  | 10 à 13                             |
|----------------------------------------------|------------------------------------------------------------------------------|--------------------|---------------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|-------------------------------------|
| atomes                                       | atomes                                                                       | atomes             | atomes                          | atomes                            | atomes                            | atomes                             | atomes                             | atomes                              |
| H <sub>2</sub>                               | $H_2O$                                                                       | NH <sub>3</sub>    | CH <sub>4</sub>                 | CH <sub>3</sub> OH                | CH <sub>2</sub> CHOH              | $H_2C_6$                           | (CH <sub>3</sub> ) <sub>2</sub> O  | (CH <sub>3</sub> ) <sub>2</sub> CO  |
| CO                                           | $H_2S$                                                                       | $H_2CO$            | SiH <sub>4</sub>                | CH <sub>3</sub> SH                | c-C <sub>2</sub> H <sub>4</sub> O | HCOOCH <sub>3</sub>                | CH <sub>3</sub> CH <sub>2</sub> CN | HOCH2CH2OH                          |
| CSi                                          | HCN                                                                          | H <sub>2</sub> CS  | CH <sub>2</sub> NH              | $C_2H_4$                          | HCOCH <sub>3</sub>                | CH <sub>2</sub> OHCHO              | CH <sub>3</sub> CH <sub>2</sub> OH | CH <sub>3</sub> CH <sub>2</sub> CHO |
| CP                                           | HNC                                                                          | $C_2H_2$           | $NH_2CN$                        | $H_2C_4$                          | CH <sub>3</sub> CCH               | CH <sub>3</sub> C <sub>3</sub> N   | CH <sub>3</sub> C <sub>4</sub> H   | CH <sub>3</sub> C <sub>5</sub> N    |
| CS                                           | $CO_2$                                                                       | HNCO               | $CH_2CO$                        | CH <sub>3</sub> CN                | CH <sub>3</sub> NH <sub>2</sub>   | CH <sub>3</sub> COOH               | HC7N                               | HC <sub>9</sub> N                   |
| NO                                           | $SO_2$                                                                       | HNCS               | нсоон                           | CH <sub>3</sub> NC                | CH <sub>2</sub> CHCN              | CH <sub>2</sub> CHCHO              | $C_8H$                             | CH <sub>3</sub> C <sub>6</sub> H    |
| NS                                           | MgCN                                                                         | $H_3O^+$           | $HC_3N$                         | NH <sub>2</sub> CHO               | HC <sub>5</sub> N                 | CH <sub>2</sub> CCHCN              | $C_8H^-$                           | C <sub>2</sub> H <sub>5</sub> OCHO  |
| SO                                           | MgNC                                                                         | SiC <sub>3</sub>   | $HC_2NC$                        | HC <sub>2</sub> CHO               | $C_6H$                            | $C_7H$                             | CH <sub>3</sub> CONH <sub>2</sub>  | $C_6H_6$                            |
| HCl                                          | NaCN                                                                         | $C_3S$             | c-C <sub>3</sub> H <sub>2</sub> | $HC_3NH^+$                        | $C_6H^-$                          | NH <sub>2</sub> CH <sub>2</sub> CN | CH <sub>2</sub> CHCH <sub>3</sub>  | C <sub>3</sub> H <sub>7</sub> CN    |
| NaCl                                         | $N_2O$                                                                       | $H_2CN$            | $1-C_3H_2$                      | $HC_4N$                           |                                   |                                    |                                    | HC11N                               |
| KCl                                          | $NH_2$                                                                       | c-C <sub>3</sub> H | $CH_2CN$                        | $C_5N$                            |                                   |                                    |                                    |                                     |
| AlCl                                         | OCS                                                                          | $1-C_3H$           | $H_2COH^+$                      | $C_5H$                            | 0                                 |                                    | ام مماریم                          |                                     |
| AlF                                          | $CH_2$                                                                       | HCCN               | C <sub>4</sub> Si               | $H_2C_4$                          | Organ                             | ic mole                            | cules a                            | ominate                             |
| PN                                           | HCO                                                                          | CH <sub>3</sub>    | $C_5$                           | $C_5N^-$                          | •                                 |                                    |                                    |                                     |
| SiN                                          | $C_3$                                                                        | $C_2CN$            | $HNC_3$                         | c-H <sub>2</sub> C <sub>3</sub> O |                                   |                                    |                                    |                                     |
| SiO                                          | $C_2H$                                                                       | $C_3O$             | $C_4H$                          | Inorg                             | zanic m                           | nolecule                           | s with                             | heavy                               |
| SiS                                          | $C_2O$                                                                       | HCNH <sup>+</sup>  | $C_4H^-$                        | 11018                             |                                   | loiceuic                           |                                    | incuvy                              |
| NH                                           | $C_2S$                                                                       | HOCO <sup>+</sup>  | CNCHO                           | atom                              |                                   | macthy                             |                                    | nctollar »                          |
| OH                                           | AINC                                                                         | $C_3N^-$           |                                 | aton                              | is ale                            | mostry •                           |                                    | iistellal »                         |
| $C_2$                                        | HNO                                                                          | HCNO               |                                 |                                   |                                   |                                    |                                    |                                     |
| CN                                           | SiCN                                                                         | HSCN               |                                 | <b>c</b> .                        |                                   |                                    |                                    |                                     |
| HF                                           | N <sub>2</sub> H <sup>+</sup> Grains as refractory minerals, covalent bonds. |                    |                                 |                                   |                                   |                                    |                                    |                                     |
| FeO                                          | SiNC                                                                         |                    |                                 |                                   | ,                                 |                                    |                                    |                                     |
| LiH                                          | c-SiC <sub>2</sub>                                                           |                    | f the c                         | ras nh                            | ase and                           | d of che                           | mistry                             | (surfaces)                          |
| CH                                           | HCO <sup>+</sup> Out of the gas phase and of themistry (surfaces)            |                    |                                 |                                   |                                   |                                    |                                    |                                     |
| CHT                                          | HOCT                                                                         |                    |                                 |                                   |                                   |                                    |                                    |                                     |
| COT                                          | HCST                                                                         | imito              | d                               | nlovit                            |                                   | to tho r                           | natura a                           | of and                              |
| 201                                          | H <sup>t</sup> LIIIILeu Complexity due to the hature of gas                  |                    |                                 |                                   |                                   |                                    |                                    |                                     |
| SH OCN                                       |                                                                              |                    |                                 |                                   |                                   |                                    |                                    |                                     |
| 02<br>N                                      | HOP TAKE REACTIONS AS COMPARED TO SOUR Phase Ones                            |                    |                                 |                                   |                                   |                                    |                                    |                                     |
| IN <sub>2</sub>                              | CCP                                                                          |                    |                                 |                                   | -                                 |                                    | •                                  |                                     |
| East decrease in abundances of large species |                                                                              |                    |                                 |                                   |                                   |                                    |                                    |                                     |
| rast decrease in abundances of large species |                                                                              |                    |                                 |                                   |                                   |                                    |                                    |                                     |
| AIO                                          |                                                                              |                    |                                 |                                   |                                   |                                    |                                    |                                     |

In an H-rich medium, atoms like O, C, N will easily make simple hydrides like H<sub>2</sub>O, CH<sub>4</sub>, NH<sub>3</sub> and **in presence of cold surfaces** give **ICES (Oort and van de Hulst, BAN, <u>1946</u>)** 

# Interstellar Ices

Observed (much later!) toward embedded infrared souces (protostars) within collapsing molecular clouds, forming disks, stars, planets and debris (asteroids, comets,dust)

Gas phase ion-molecule reactions (and others) will provide for CO and its derivatives (HCO,  $H_2CO...$ ) and go to **ICES** 

## Ices: the most abundant and universal molecular material

First detection for (solid) CH<sub>4</sub> and solid CO<sub>2</sub>?



### although for CH<sub>4</sub>...and for CO<sub>2...</sub>

THE ASTROPHYSICAL JOURNAL, 376:556-560, 1991 August 1 © 1991. The American Astronomical Society. All rights reserved. Printed in U.S.A.

> DISCOVERY OF INTERSTELLAR METHANE: OBSERVATIONS OF GASEOUS AND SOLID CH<sub>4</sub> ABSORPTION TOWARD YOUNG STARS IN MOLECULAR CLOUDS J. H. LACY,<sup>1,5</sup> J. S. CARR,<sup>2,5</sup> NEAL J. EVANS II,<sup>1,4</sup> F. BAAS,<sup>3,1</sup> J. M. ACHTERMANN,<sup>1,5</sup> AND J. F. ARENS<sup>4</sup> Received 1990 November 25: accepted 1991 January 28

'...The total abundance (predominantly in the solid phase) is 1 to 4% of total CO (predominantly gaseous). This high fraction of  $CH_4$  in the solid quggests that it Is made on the grains...' (Oort and Van de Hulst hydrides)

#### The discovery of interstellar carbon dioxide

#### L.B. d'Hendecourt<sup>1</sup> and M. Jourdain de Muizon<sup>2,3</sup>

<sup>1</sup> Groupe de Physique des Solides, Université de Paris 7, Tour 23, 4 Place Jussieu, F-75251 Paris Cedex 05, France
<sup>2</sup> Sterrewacht Leiden, Postbus 9513, NL-2300 RA Leiden, The Netherlands
<sup>3</sup> Observatoire de Paris, Section de Meudon, F-92190 Meudon, France

Received July 25; accepted August 18, 1989

# '...This detection of solid CO<sub>2</sub> is a confirmation of the presence of UV irradiation of these ices...'

## Dust grain: a simple view



## → Surface and **solid-state** - **bulk** chemistry

# Organic Synthesis via Irradiation and Warming of Ice Grains in the Solar Nebula

#### Fred J. Ciesla<sup>1\*</sup> and Scott A. Sandford<sup>2</sup>

<sup>1</sup>Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, IL 60430, USA. <sup>2</sup>NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035, USA.

\*To whom correspondence should be addressed. E-mail: fciesla@uchicago.edu

Complex organic compounds, including many important to life on Earth, are commonly found in meteoritic and cometary samples, though their origins remain a mystery. We examined whether such molecules could be produced within the solar nebula by tracking the dynamical evolution of ice grains in the nebula and recording the environments they were exposed to. We found that icy grains originating in the outer disk, where temperatures were <30 K, experienced UV irradiation exposures and thermal warming similar to that which has been shown to produce complex organics in laboratory experiments. These results imply that organic compounds are natural byproducts of protoplanetary disk evolution and should be important ingredients in the formation of all planetary systems, including our own.

Sciencexpress / http://www.sciencemag.org/content/early/recent / 29 March 2012 / Page 4/ 10.1126/science.1217291





## Astro

## MICMOC: Matière Interstellaire et Cométaire, Molécules Organiques Complexes



## Schematics of the **MICMOC** experiment



#### Radical-induced chemistry from VUV photolysis of interstellar ice analogues containing formaldehyde

Teddy Butscher, Fabrice Duvernay, Grégoire Danger, and Thierry Chiavassa

PIIM, UMR 7345, Aix-Marseille Université, Avenue Escadrille Normandie-Niemen, 13397 Marseille, France e-mail: fabrice.duvernay@univ-amu.fr

Received 5 February 2016 / Accepted 16 June 2016

| -                     |                 |            |                           |                    |     |
|-----------------------|-----------------|------------|---------------------------|--------------------|-----|
| v (cm <sup>-1</sup> ) |                 | Mode       | Α                         | Molecule           | Ref |
| <sup>12</sup> C       | <sup>13</sup> C |            | (cm molec <sup>-1</sup> ) |                    |     |
| 2343                  | 2275            | v(CO)      | $7.6 \times 10^{-17}$     | CO <sub>2</sub>    | a   |
| 2136                  | 2087            | v(CO)      | $1.1 \times 10^{-17}$     | CO                 | b   |
| 1846                  | 1804            | v(C = O)   | $2.1 \times 10^{-17}$     | HCO                | с   |
| 1751                  | 1721            | v(C = O)   | $2.6 \times 10^{-17}$     | GA                 | d   |
| 1217                  | 1205            | ??         |                           | POM                | c   |
| 1109                  | 1095            | $\nu(C-O)$ | $9.7 \times 10^{-18}$     | POM                | c   |
| 1075                  | 1058            | v(C-O)     | $3.9 \times 10^{-18}$     | EG                 | d   |
| 1046                  | XX              | v(C-O)     | $3.9 \times 10^{-18}$     | EG                 | đ   |
| 1027                  | 1006            | v(C-O)     | $1.8 \times 10^{-17}$     | CH <sub>3</sub> OH | ſ   |
| 991                   | 970             | v(C-O)     | _                         | PŐM                | e   |
| 945                   | 919             | v(C-O)     | $3.0 \times 10^{-17g}$    | POM                | c   |
| 912                   | 887             | v(C-O)     | $3.0 \times 10^{-17g}$    | POM                | e   |

VUV irradiation of H<sub>2</sub>CO at 15 K: molecules identified in the infrared

A&A 494, 109–115 (2009) DOI: 10.1051/0004-6361:200810309 © ESO 2009



#### A tracer of organic matter of prebiotic interest in space, made from UV and thermal processing of ice mantles

G. M. Muñoz Caro1 and E. Dartois2



Review

pubs.acs.org/CR

### Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules

Karin I. Öberg\*

Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, Massachusetts 02138, United States

## The organic residue at 300 K



totally soluble in usual solvents (water, methanol)

• 50 to 300 µg in each experiment (1 week to 1 month)

• Macromolecular material (*Danger et al., GCA, 2013*) as free molecules up to 4000 uma in the soluble part

The « new » tools of Astrochemistry: analytical chemistry

A scientific/technical interdiscilinary challenge



## Detection of numerous amino acids (chiral molecules) in the acid hydrolysis of organic residues



Munoz-Caro et al, 2003, see also Bernstein et al, 2003, Nuevo et al, 2006, 2008, Meinert et al, 2012



#### **GCxGC-MS of the organic residue**

20 amino acids (up to 6 C atoms) + 6 di-amino acids + ~ 10 'unknown' species

**Targeted search for amino acids** 



## CHEMPLUSCHEM

## **Targeted Molecules search: amino acids**

DOI: 10.1002/cplu.201100048

## N-(2-Aminoethyl)glycine and Amino Acids from Interstellar Ice Analogues

Cornelia Meinert,<sup>\*[a]</sup> Jean-Jacques Filippi,<sup>[a]</sup> Pierre de Marcellus,<sup>[b]</sup> Louis Le Sergeant d'Hendecourt,<sup>[b]</sup> and Uwe J. Meierhenrich<sup>\*[a]</sup>

Glycine Sarcosine N-Methyl-D,L-alanine  $\alpha$ -L-Alanine  $\alpha$ -D-Alanine β-Alanine L-Serine<sup>[f]</sup> D-Serine<sup>[f]</sup> D, L-Amino (methylamino) acetic acid N-Aminomethyl glycine L-2,3-Diaminopropanoic acid p-2,3-Diamino-propanoic acid Triaminopropane N-Ethylglycine L-2-Aminobutyric acid D-2-Aminobutyric acid D, L-3-Aminoisobutyric acid L-3-Aminobutyric acid D-3-Aminobutyric acid 4-Aminobutyric acid L-Aspartic acid D-Aspartic acid

L-Pyroglutamic acid<sup>[h]</sup> D-Pyroglutamic acid<sup>[h]</sup> N-(2-aminoethyl) glycine 3-Amino-2-(aminomethyl) propionic acid<sup>[]</sup> L-2,4-Diaminobutyric acid<sup>®</sup> D-2,4-Diaminobutyric acid<sup>[1]</sup> Glycine-glycine<sup>[i]</sup> D, L-Proline L-Norvaline p-Norvaline Aminomethyl butanoic acid<sup>[k]</sup> 5-Aminovaleric acid D, L-Hydroxyproline L-Aminomethyl pentanoic acid<sup>[]</sup> D-Aminomethyl pentanoic acid<sup>[]</sup> Aminomethyl pentanoic acid<sup>[]</sup> Unidentified

N-(2-Aminoethyl)glycine and D,L-2,4-diaminobutyric acid may be involved in PNA prior to RNA world.

## Numerous «prebiotic» molecules



## Follow-up work

Analogue of soluble organic matter (SOM) of meteorites (carbonaceous chondrites) and comets (ROSETTA)? Precursor of insoluble organic matter (IOM)? (*de Marcellus et al, MNRAS, 2017*)
Search for sugars

## Targeted molecules: glycolaldehyde and glyceraldehyde



de Marcellus, Meinert et al, PNAS, 112, 965 (2015)

# **Aldehydes identified into the residues**

MS fragmentation/<sup>13</sup>C sample MS fragmentation/<sup>12</sup>C standard #C<sup>a</sup> Compound R<sub>t1</sub><sup>b</sup> [min]  $R_{+2}^{c}$  [sec] [M+•] А 226<sup>d</sup> 17.08 Formaldehyde 1.80 1 (Z)-Acetaldehyde 20.35 1.94 241<sup>d</sup> 2 241<sup>d</sup> HO (E)-Acetaldehyde 21.20 1.92 н н (Z)-Glycolaldehyde 41.81 2.24 329<sup>e</sup> ОН (E)-Glycolaldehyde 329<sup>e</sup> 42.14 2.32 450<sup>f</sup> (Z)-Glyoxal 72.12 5.21 Glycolaldehyde Lactaldehyde Glyceraldehyde 450<sup>f</sup> (E)-Glyoxal 74.54 5.14 256<sup>d</sup> 3 (Z)-Propanal 25.49 1.94 В D 256<sup>d</sup> (E)-Propanal 25.99 1.94 254<sup>d</sup> (E,Z)-Propenal 25.98 2.20 254<sup>d</sup> Н (E,Z)-Propenal 26.66 2.33 н н (Z) Lactaldehyde 46.39 2.54 344<sup>e</sup> (E) Lactaldehyde 46.81 344<sup>e</sup> 2.54 (Z) Glyceraldehyde 431<sup>9</sup> 417, 3, 73 51.47 2.55 (E) Glyceraldehyde 52.89 2.44 431<sup>9</sup> 417, 3, 73 Glyoxal Methylglyoxal Acrolein (Propenal) 465<sup>f</sup> (Z)-Methylglyoxal 71.12 3.84 Fig. 1. Selected aldehydes identified at room temperature in simulated 465<sup>f</sup> (E)-Methylglyoxal 74.54 4.14 precometary organic residues: (A) hydroxyaldehydes, (B) dialdehyde, (C) (Z) Butyraldehyde 31.65 271<sup>d</sup> 1.99 4 ketoaldehyde, and (D) an unsaturated aldehyde. (E) Butyraldehyde 271<sup>d</sup> 31.74 2.04

Table 1. Aldehydes and sugar-related molecules identified in simulated precometary organic residues

Data were obtained from a VUV-irradiated ice mixture at 78 K containing water, <sup>13</sup>C-labeled methanol, and ammonia, H<sub>2</sub>O:<sup>13</sup>CH<sub>3</sub>OH:NH<sub>3</sub>, in molar composition of 12:3.5:1. After water extraction of the residue at room temperature, the aldehydes were derivatized to form 1-(*O*-pentafluorobenzyl) oxime derivatives and identified by enantioselective GC×GC–TOFMS analysis.

<sup>a</sup>Quantity of carbon atoms. <sup>b</sup>GC×GC retention time, first dimension. <sup>c</sup>GC×GC retention time, second dimension. <sup>d</sup>Molecular ion *m/z* value of 1-(*O*-pentafluorobenzyl) oxime (PFBO) derivatives. <sup>e</sup>Molecular ion *m/z* value of PFBO trimethylsilyl ether derivatives. <sup>f</sup>Molecular ion *m/z* value of di-PFBO derivatives. <sup>g</sup>Molecular ion *m/z* value of PFBO-bis(trimethylsilyl) ether derivatives. <sup>h</sup>McLafferty rearrangement.

## **Detection of ribose in organic residues**

RESEAR CH



#### ASTROCHEMISTRY

# Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs

Cornelia Meinert,<sup>1</sup>\* Iuliia Myrgorodska,<sup>1,2</sup> Pierre de Marcellus,<sup>3</sup> Thomas Buhse,<sup>4</sup> Laurent Nahon,<sup>2</sup> Soeren V. Hoffmann,<sup>5</sup> Louis Le Sergeant d'Hendecourt,<sup>3</sup> Uwe J. Meierhenrich<sup>1</sup>\*

Meinert et al, Science, 352 (2016)

#### ARTICLE

https://doi.org/10.1008/h41467-018-07693-x

OPEN

## Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparison to meteorites

Michel Nuevo (31,2, George Cooper<sup>3</sup> & Scott A. Sandford (31)

| Table 1 Deoxysugar derivatives identified in the ice photolysis residues (regular and <sup>13</sup> C-labeled) |                                               |                                   |                                            |                           |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------|--------------------------------------------|---------------------------|
| Compounds <sup>a</sup>                                                                                         | Formulas                                      | R <sub>t</sub> (min) <sup>b</sup> | Abundances in residues <sup>c</sup> (pmol) | Detected in meteorites?   |
| Deoxysugars                                                                                                    |                                               |                                   |                                            |                           |
| 2-Deoxyribose                                                                                                  | C5H10O4                                       | 61.2, 61.4                        | 217-3855                                   | Undetermined <sup>k</sup> |
| 2-Deoxyxylose <sup>d</sup>                                                                                     | C <sub>5</sub> H <sub>10</sub> O <sub>4</sub> | 57.0, 57.3                        | 373-3636 <sup>e</sup>                      | Undetermined <sup>k</sup> |
| Deoxysugar alcohols                                                                                            |                                               |                                   |                                            |                           |
| 1,2-Propanediol <sup>f</sup>                                                                                   | C <sub>3</sub> H <sub>8</sub> O <sub>2</sub>  | 9.9                               | ≥8-375                                     | Yes <sup>lm</sup>         |
| 1,3-Propanediol <sup>f,g</sup>                                                                                 | C <sub>3</sub> H <sub>8</sub> O <sub>2</sub>  | 36.9                              | ≥19-27                                     | No                        |
| 2-Methyl-1,3-propanediol <sup>g,h</sup>                                                                        | C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> | 38.7                              | ≤1038-3354 <sup>h</sup>                    | No                        |
| 2-(Hydroxymethyl)-1,3-propanediol                                                                              | C <sub>4</sub> H <sub>10</sub> O <sub>3</sub> | 30.9                              | n.d.                                       | Yes <sup>I</sup>          |
| 1,2,3-Butanetriol                                                                                              | C <sub>4</sub> H <sub>10</sub> O <sub>3</sub> | 14.5                              | 6-39                                       | No                        |
| 1,2,4-Butanetriol                                                                                              | C <sub>4</sub> H <sub>10</sub> O <sub>3</sub> | 32.2                              | 35-50                                      | Yes <sup>I</sup>          |
| Deoxysugar acids                                                                                               |                                               |                                   |                                            |                           |
| 3,4-Dihydroxybutyric acid <sup>ij</sup>                                                                        | C <sub>4</sub> H <sub>8</sub> O <sub>4</sub>  | 16.5                              | _                                          | Yes <sup>n</sup>          |
| Sugars                                                                                                         |                                               |                                   |                                            |                           |
| Ribose                                                                                                         | C <sub>5</sub> H <sub>10</sub> O <sub>5</sub> | 64.7, 65.0                        | 237-2467                                   | No                        |



THE ASTROPHYSICAL JOURNAL, 793:125 (7pp), 2014 October 1 © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

#### THE PHOTOCHEMISTRY OF PYRIMIDINE IN REALISTIC ASTROPHYSICAL ICES AND THE PRODUCTION OF NUCLEOBASES

MICHEL NUEVO<sup>1,2</sup>, CHRISTOPHER K. MATERESE<sup>1,3</sup>, AND SCOTT A. SANDFORD<sup>1</sup>
<sup>1</sup>NASA Ames Research Center, MS 245–6, Moffett Field, CA 94035, USA; michel.nuevo-1@nasa.gov
<sup>2</sup> BAER Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952, USA
<sup>3</sup> Oak Ridge Associated Universities, PO Box 117, MS 36, Oak Ridge, TN 37831, USA
*Received 2014 June 17; accepted 2014 August 4; published 2014 September 15*

THE ASTROPHYSICAL JOURNAL, 864:44 (6pp), 2018 September 1 @ 2018. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/aad328



#### The Photochemistry of Purine in Ice Analogs Relevant to Dense Interstellar Clouds

Christopher K. Materese<sup>1,2</sup>, Michel Nuevo<sup>1,2</sup>, Brittiana L. McDowell<sup>3</sup>, Christina E. Buffo<sup>4</sup>, and Scott A. Sandford<sup>1</sup> <sup>1</sup>NASA Ames Research Center, Space Science and Astrobiology Division, MS 245-6, Moffett Field, CA 94035, USA; Scott A.Sandford@nasa.gov <sup>2</sup>Bay Area Environmental Research Institute, NASA Research Park, MS 18-4, Moffett Field, CA 94035, USA <sup>3</sup>Langston University, 701 Sammy Davis Jr. Dr., Langston, OK 73050, USA <sup>4</sup>Wellesley College, 106 Central St, Wellesley, MA 02481, USA *Received 2018 May 25; revised 2018 July 10; accepted 2018 July 10; published 2018 August 29* 

doi:10.1088/0004-637X/793/2/125

#### ON THE FORMATION OF DIPEPTIDES IN INTERSTELLAR MODEL ICES

R. I. KAISER<sup>1</sup>, A. M. STOCKTON<sup>2,3</sup>, Y. S. KIM<sup>1</sup>, E. C. JENSEN<sup>2</sup>, AND R. A. MATHIES<sup>2</sup> <sup>1</sup>Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA <sup>2</sup>Department of Chemistry, University of California, Berkeley, CA 94720, USA <sup>3</sup> Jet Propulsion Laboratory, Pasadena, CA 01109, USA *Received 2012 October 10; accepted 2013 January 7; published 2013 February 25* 



#### Molecule detections from COSAC experiment (GC- MS on board Philae



Note: most (if not all) of these molecules are present in our residues (or similar ones)

#### Low depletion of phosphorus in ISM leads to the detection of phosphine (PH<sub>3</sub>) in 61p

#### RESEARCH ARTICLE

#### SPACE SCIENCES

#### Prebiotic chemicals—amino acid and phosphorus in the coma of comet 67P/Churyumov-Gerasimenko

2016 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 10.1126/sciadv.1600285

Kathrin Altwegg,<sup>1,2</sup>\* Hans Balsiger,<sup>1</sup> Akiva Bar-Nun,<sup>3</sup> Jean-Jacques Berthelier,<sup>4</sup> Andre Bieler,<sup>1,5</sup> Peter Bochsler,<sup>1</sup> Christelle Briois,<sup>6</sup> Ursina Calmonte,<sup>1</sup> Michael R. Combi,<sup>5</sup> Hervé Cottin,<sup>7</sup> Johan De Keyser,<sup>8</sup> Frederik Dhooghe,<sup>8</sup> Bjorn Fiethe,<sup>9</sup> Stephen A. Fuselier,<sup>10</sup> Sébastien Gasc,<sup>1</sup> Tamas I. Gombosi,<sup>5</sup> Kenneth C. Hansen,<sup>5</sup> Myrtha Haessig,<sup>1,10</sup> Annette Jäckel,<sup>1</sup> Ernest Kopp,<sup>1</sup> Axel Korth,<sup>11</sup> Lena Le Roy,<sup>2</sup> Urs Mall,<sup>11</sup> Bernard Marty,<sup>12</sup> Olivier Mousis,<sup>13</sup> Tobias Owen,<sup>14</sup> Henri Rème,<sup>15,16</sup> Martin Rubin,<sup>1</sup> Thierry Sémon,<sup>1</sup> Chia-Yu Tzou,<sup>1</sup> James Hunter Waite,<sup>10</sup> Peter Wurz<sup>1</sup>

THE ASTROPHYSICAL JOURNAL, 819:97 (15pp), 2016 March 10 @ 2016. The American Astronomical Society. All rights reserved.



#### PROBING THE CARBON–PHOSPHORUS BOND COUPLING IN LOW-TEMPERATURE PHOSPHINE (PH<sub>3</sub>)– METHANE (CH<sub>4</sub>) INTERSTELLAR ICE ANALOGUES

ANDREW M. TURNER<sup>1,2</sup>, MATTHEW J. ABPLANALP<sup>1,2</sup>, AND RALF I. KAISER<sup>1,2</sup> <sup>1</sup>W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA <sup>2</sup>Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA *Received 2015 October 28; accepted 2016 February 2; published 2016 March 2* 

#### ARTICLE

DOI: 10.1038/s41467-018-06415-7

OPEN

## An interstellar synthesis of phosphorus oxoacids

Andrew M. Turner<sup>1,2</sup>, Alexandre Bergantini <sup>1,2</sup>, Matthew J. Abplanalp<sup>1,2</sup>, Cheng Zhu <sup>1,2</sup>, Sándor Góbi <sup>1,2</sup>, Bing-Jian Sun<sup>3</sup>, Kang-Heng Chao<sup>3</sup>, Agnes H.H. Chang<sup>3</sup>, Cornelia Meinert <sup>4</sup> & Ralf I. Kaiser <sup>1,2</sup>



Journal of Interdisciplinary Methodologies and Issues in Science



#### Interstellar ices: a possible scenario for symmetry breaking of extraterrestrial chiral organic molecules of prebiotic interest

Louis L.S. d'HENDECOURT\*<sup>1,2</sup>, Paola MODICA<sup>3</sup>, Cornelia MEINERT<sup>4</sup>, Laurent NAHON<sup>5</sup>, Uwe J. MEIERHENRICH<sup>4</sup>

Enantiomeric excesses produced in some amino acids by irradiation of IS ices analogues with UV – CPL light from the synchrotron SOLEIL

IR-CPL observed in many protostellar regions such as Orion-KL (see Kwon et al, 2016, 2018

Link with e.e's observed in meteorites? (Meierhenrich et al, 2015

## **Comparaison SOM in the lab/meteorites as « Paris »?**

#### Laboratory

#### « Paris » Carbonaceous chondites CM2.7/.8





Amino acids distribution as a tracer of aqueous alteration (Modica, Martins et al, ApJ 2019 Amino acids and hydrocarbons Martins et al, 2015

#### Non-targeted searches:

## VHRMS (orbitrap) analyses of soluble organic residues



Molecules with proton donor chemical functions (e.g. carboxylic acid –COOH) up to 4000 uma!

Danger et al., 2013, 2016, GCA, 118, 184; 189, 184, Schmitt-Kopplin et al, 2010, Murchison

# High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall

Philippe Schmitt-Kopplin<sup>a,1,2</sup>, Zelimir Gabelica<sup>b,1</sup>, Régis D. Gougeon<sup>c,1</sup>, Agnes Fekete<sup>a</sup>, Basem Kanawati<sup>a</sup>, Mourad Harir<sup>a</sup>, Istvan Gebefuegi<sup>a</sup>, Gerhard Eckel<sup>d</sup>, and Norbert Hertkorn<sup>a,1</sup>



#### HYDROCARBON MATERIALS OF LIKELY INTERSTELLAR ORIGIN FROM THE PARIS METEORITE

S. MEROUANE<sup>1</sup>, Z. DJOUADI<sup>1</sup>, L. LE SERGEANT D'HENDECOURT<sup>1</sup>, B. ZANDA<sup>2</sup>, AND J. BORG<sup>1</sup> <sup>1</sup> Institut d'Astrophysique Spatiale, CNRS, UMR-8617, Université Paris Sud, bâtiment 121, F-91405 Orsay Cedex, France; sihane.merouane@ias.u-psud.fr, zahia.djouadi@ias.u-psud.fr <sup>2</sup> Muséum National d'Histoire Naturelle, CNRS, 61 rue Buffon, F-75005 Paris, France Received 2012 May 25; accepted 2012 July 17; published 2012 August 24



#### Micro IR Spectroscopie sur la ligne SMIS-SOLEIL



Mid-infrared Peaks Obtained in the "Excavated" Grains (see Figure 3) between 1150 and 4000 cm<sup>-1</sup> and their Possible Assignment According to Ehrenfreund et al. (1991), Socrates (2001), Matrajt et al. (2004), and Berné et al. (2011)

| Peak Value in cm <sup>-1</sup> | Peak Value in $\mu$ m  | Possible Assignment                                                     |
|--------------------------------|------------------------|-------------------------------------------------------------------------|
| 1182                           | 8.13                   | C-H bending mode                                                        |
| 1255                           | 7.97                   | C-O stretching in an ester                                              |
| 1462                           | 6.84                   | C-H bending mode                                                        |
| 1512                           | 6.61                   | C=C aromatic stretching                                                 |
| 1583                           | 6.32                   | Carboxylic acids                                                        |
| 1740                           | 5.75                   | C=O in ketone                                                           |
| 2850                           | 3.51                   | Symmetric stretching mode of the CH2 group in the alphatic hydrocarbon  |
| 2867                           | 3.49                   | Symmetric stretching mode of the CH3 group in the alphatic hydrocarbon  |
| 2923                           | 3.42                   | Asymmetric stretching mode of the CH2 group in the alphatic hydrocarbon |
| 2954                           | 3.38                   | Asymmetric stretching mode of the CH3 group in the alphatic hydrocarbon |
| 3385                           | 2.95                   | O-H from adsorbed water                                                 |
| 3050, 1610, 1305, 1150         | 3.27, 6.21, 7.66, 8.69 | Polycyclic aromatic hydrocarbons (PAH) <sup>a</sup>                     |

Note. a The 11.2 µm band usually observed in PAH cannot be identified in our samples because of the presence of silicates in this wavelength range.

Processus dans le MIS? Photo/thermochemie des glaces



Prebiotic chemistry: How form complex structures in molecular terms or chemical networks. How can evolve these chemical networks toward biochemical network (chemical evolution, selectivity, replication...).

1- Building blocks from extraterrestrial and planetary reservoir.



Molecular replicators and networks

2- Free low entropy energy (UV-Vis photons, Pascal, 2017) + liquid water

**3-** Self-organization of organic matter and emergence of far from equilibrium chemical systems (minimal life?) Pascal R., J.Syst.Chem., **3** (2012) 3

**Chemical evolution and selectivity** 

Pascal R., J.Syst.Chem., **3** (2012) 3 Pross A., J.Syst.Chem., **2** (2011) 1-14 Pross et al., Open Biology, **3** (2013) 120190

# MICMOC-LE far from equilibrium chemistry

A semi-open reactor for prebiotic chemical evolution in a « natural » environment



MICMOC-LE is a systemic (holistic) experimental approach

toward the <u>exponential</u> build-up of chemical <u>replicators</u> (DKS stability)

allowing for a strong chemical selectivity imposed by the environment,

<u>a proto - Darwinian</u> evolution at the <u>chemical</u> level

possibility to work <u>backwards</u> at each step (reductionist approach)

## **Ultimate goals**

to define a phase space-like conditions for emergence of true prebiotic and biochemical systems that will apply to primitive Earth, Mars, icy satellites, exoplanets...and define:

Habitability at the emergence of life = Chemicability for self-replication

As early as 1967 (!) with the Spiegelman's monster...

#### AN EXTRACELLULAR DARWINIAN EXPERIMENT WITH A SELF-DUPLICATING NUCLEIC ACID MOLECULE\*

BY D. R. MILLS, † R. L. PETERSON, AND S. SPIEGELMAN

DEPARTMENT OF MICROBIOLOGY, UNIVERSITY OF ILLINOIS, URBANA

Communicated May 18, 1967

...and in 2018:

ARTICLE

DOI: 10.1038/s41467-018-04488-y

OPEN

# Self-selection of dissipative assemblies driven by primitive chemical reaction networks

Marta Tena-Solsona<sup>1,2</sup>, Caren Wanzke<sup>1</sup>, Benedikt Riess<sup>1</sup>, Andreas R. Bausch<sup>3</sup> & Job Boekhoven (p<sup>1,2</sup>)

## Determinism and contingency



# Thank You !