Grain surface chemistry and its impact on the gas phase

Stéphanie Cazaux

TU Delft, The Netherlands XT Symposium 6th of September 2019

THE ASTROPHYSICAL JOURNAL, 604:222–237, 2004 March 20 © 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.

H₂ FORMATION ON GRAIN SURFACES

S. CAZAUX AND A. G. G. M. TIELENS Kapteyn Astronomical Institute, P.O. Box 800, NL 9700 AV Groningen, Netherlands; cazaux@astro.rug.nl Received 2002 April 20; accepted 2003 December 3

Overview

- The interplay between ice and gas in space
 - Prestellar cores
 - Hot cores and corinos
 - Icy moons
- From ice to gas: thermal desorption chemical desorption
- Astrophysical applications
- Conclusions

From gas to ice

B68 IRAM 30m; Caselli 1999, Bergin et al. 2002 Keto & Caselli 2010 Extinction Av~27 C¹⁸O J=1-0

Prestellar cores: CO depleted from the gas

~ 90% of CO molecules should leave the gas phase, on average along the line of sight ~99% of them must deplete in the core nucleus *Caselli et al. 1999*

CO freeze-out onto dust particles \rightarrow form thick icy mantles Ossenkopf & Henning 1994; Pontoppidan et al. 2008.

Many cold cores

Willacy et al. 1998; Tafalla et al. 2002, 2004; Pagani et al. 2005, 2012; Brady-Ford & Shirley 2011

From ices to gas

Prestellar cores: CO depleted from the gas

Hot corino: complex molecules

IRAS16293: Botinelli 2004; Bisschop 2008; Cazaux et al. 2003; Pineda 2012

B68 IRAM 30m; Caselli 1999, Bergin et al. 2 Keto & Caselli 2010 Extinction Av~27 C¹⁸O J=1-0

From ices to gas

Prestellar cores: CO depleted from the gas

Hot corino: complex molecules

IRAS16293: Botinelli 2004; Bisschop 2008; Cazaux et al. 2003; Pineda 2012

B68 IRAM 30m; Caselli 1999, Bergin et al. 2 Keto & Caselli 2010 Extinction Av~27 C¹⁸O J=1-0

Icy moon: Enceladus, the moon with a plume

Enceladus—Saturn's Active Ocean World

Accretion and thermal desorption: From gas to ice and back to gas

Binding of simple molecules: Experiments CO adsorption and desorption

Spain:

InterStellar Astrochemistry Chamber

Munoz Caro et al. 2010

CO accretion from 80 K to 8 K

Accretion → CO solid by Fourier transform infrared (FTIR) spectroscopy in transmittance Taiwan: Interstellar Photoprocess System Chen et al. 2014 CO accretion at 14 K TPD→Laser reflective interference system counts with

a He-Ne laser (λ = 632.8 nm)

TPD \rightarrow Mass spectrometer to follow CO desorbing with T

CO desorption

Multilayer CO/CO at ~30K; Monolayer CO/H2O until ~50-60K Noble et al. 2014; Collings et al. 2004; Martin-Domenech et al. 2014

CO desorption: determining binding energies

Monolayer: CO on water

From TPD: 30-50 K corresponds to binding energies ranging between 900 and 1500 K (Ebin= 30.9 * T_{des}; *Luna et al. 2017*) *He et al. 2016; Martin Domenech 2014; Noble et al. 2012*

Multilayer: CO on CO

Interaction CO with a CO surface:

~830 K Luna et al. 2014; Noble et al. 2012; Munoz Caro et al 2010; Pontoppidan et al. 2006, Acharyya et al. 2007, Collings et al. 2003

CO desorption

TPD from 1) CO accretion from 80 K to 8 K 2) CO accretion at 14K **Look similar** \rightarrow accretion does not change the CO ice?

Have a look at TPD in logarithmic scales:

Multilayer CO/CO at ~30K; Monolayer CO/H₂O until ~50-60K

Noble et al. 2014; Collings et al. 2004; Martin-Domenech et al. 2014 What is the small peak at 20K???

CO molecules with binding energies ~600K More for deposition at 14K than for decreasing T

CO desorption: determining binding energies

Monolayer: CO on water

From TPD: 30-50 K corresponds to binding energies ranging between 900 and 1500 K (Ebin= $30.9 * T_{des}$; *Luna et al. 2017*)

He et al. 2016; Martin Domenech 2014; Noble et al. 2012

Multilayer: CO on CO

Interaction CO with a CO surface:

~830 K Luna et al. 2014; Noble et al. 2012; Munoz Caro et al 2010; Pontoppidan et al. 2006, Acharyya et al. 2007, Collings et al. 2003

Interaction between 2 CO molecules: van der Waals

~200 K Karssemeijer & Cuppen 2014; Tang et al. 2002; Krupskii et al 1973;

How does the binding energy increase with the number of neighbors as CO interact with 1 CO (dimer; ~200K) or with > 3 CO (surface)?

Building CO ices

Multilayer: CO on CO

Interaction between 2 CO molecules: van der Waals

~200 K Karssemeijer & Cuppen 2014

Interaction CO with a CO surface:

~830 K Luna et al. 2014; Noble et al. 2012; Munoz Caro et al 2010; Pontoppidan et al. 2006, Acharyya et al. 2007, Collings et al. 2003

Improvement in the future F. Dulieu

Simulations

Step-by-step Monte Carlo simulation to follow the formation of CO ices *Cazaux et al. 2016*

- Follow the fate of individual CO molecules
- Accretion
- Diffusion
- Evaporation
- CO arrive randomly on the
- surface + a random walk
- Cuppen & Herbst (2007) KMC Garrod (2013) off lattice KMC Lamberts (2014) KMC
- binding energy of one species
- is the sum of the pair-wise interaction potentials with its neighbours.

grid sizes of 20*20 sites Flux to mimic the experiments: Deposition 14K: 7.8 ML/min ~ 52 molecules/s Deposition 80 down to 8K 1.5 ML/min ~ 10 molecules/s

Building CO ices

 Monte Carlo simulations of the formation of the CO ices.

 Reproduce accretion + TPD

Evaporating CO ices

- Can TPD experiments constrain the diffusion?
- The presence of weakly bound CO molecules can only be reproduce if the diffusion is low.

Ice in space versus TPD

- Laboratory: TPD show binding energies of already reorganized ices. Looking at details → some constrains on binding energies and mobility
- MC simulations → weakly bound CO are present and show slow diffusion
- CO depletion in dense core → higher gas phase CO because lower binding energy?

Chemical desorption

Best fit to the measurements $\rightarrow \sim 50\%$ of D₂O desorb from OD +D

Chaabouni et al. 2012

Experiments	Surface	Coverage	Method		Reaction	Desorbing	ΔH_R	Expe	Theoretical		
	temperature	range	DED	TPD		product					
								np-ASW	Amorphous	Oxidized	
									silicate	HOPG	
	(K)	(ML)					eV	%	%	%	%
[O + H]	10	<1	/		O+H	OH	4.44	25±15*	-	50±25*	39
[0+1]	10	<1	v	v	OH+H	H_2O	5.17	30±15*	-	50±25*	27
					OH+H	H_2O	5.17	$<40\pm20^{a}$	$<70\pm20^{a}$	$< 80 \pm 20^{b}$	27
	10	0.5-1	V	\checkmark	O_2+H	O_2H	2.24	<8*	10 ± 10^{b}	-	1.4
$[O_2 + H]$					O_2H+H	H_2O_2	3.69	<8*	$<5^{b}$	-	0.5
					O_2H+H	2 OH	1.47	<8*	$<5^{b}$	-	0.3
					H_2O_2+H	H_2O+OH	2.95	<5*	$<5^{b}$	-	2.1
$[0, \pm H]$	10 and 45	0.5-1		\checkmark	O_3+H	$O_2 + OH$	3.33	-	$< 10^{b}$	<8*	8
[03+1]			V V		OH+H	H_2O	5.17	- 1	80 ± 20^{b}	-	27
[0,0]	9 to 25	.1			0+0	O_2	5.16	<5 ^c	$40 \pm 10^{\#d}$	$80 \pm 10^{#e}$	68
[0+0]	8 10 25	<1	Ŷ	v	O_2+O	O_3	1.1	$< 5^{c}$	$< 5^{d}$	<5 ^e	0
[N+N]	10	<1	\checkmark		N+N	N_2	9.79	>50&*	>70&*	>70&*	89
					CO+H	HCO	0.66	1 - 1	-	10±8*	0.7
[CO+H]	10	0.8-2.5	\checkmark	\checkmark	HCO+H	$CO+H_2$	3.85		-	$40 \pm 20^{*}$	47
					HCO+H	H_2CO	3.91		-	<8*	7
					H ₂ CO+H	CH_3O	0.88	-	-	<8*	0
					H_2CO+H	$HCO+H_2$	0.61		-	10±5*	0
$[H_2CO+H]$	10 and 55	0.8-2	\checkmark		HCO+H	$CO+H_2$	3.85	-	-	$40 \pm 20^{*}$	47
					HCO+H	H_2CO	3.91	_	_	$10 \pm 5^{*}$	7
					CH_3O+H	CH_3OH	4.56	<8*	-	<8*	2.3
[Ar+H]	10	1	\checkmark		Ar+H	Ar		- 1	<5*	-	
[NO+H/O/N]	10	0.5-5	X	\checkmark	many	many		<8*	<8*	<8*	
[CO+O]	10	0.5-4	\checkmark	\checkmark	CO+O	CO_2	5.51	<5*	-	<5*	22
$[H_2CO+O]$	10 and 55	0.8-2	X	\checkmark	H ₂ CO+O	CO_2+H_2	5.45	<10*	-	<10*	8
[CH ₃ OH+H]	10	0.5-2	\checkmark	\checkmark	CH ₃ OH+H	CH_3OH		<8*	-	<8*	
[CH ₃ OH+O]	10	0.5-2	\checkmark		CH ₃ OH+O	CH_3OH		<8*	-	<8*	

Reactions

Minissale et al. 2016 Cazaux et al. 2016

- Chemical desorption depends on:
 - Enthalpy of reaction
 - Degrees of freedom
 - Binding energies
 - Surface coverage
- For icy surfaces, the chemical desorption is much smaller than on bare surfaces (under detection limits). New measurements (Oba et al. 2018 H+HS → H₂S on water ice CD=80%.)

CO in starless and prestellar cores

- CO depletion in the center of the B68 and L1544 dense clouds ≥99% of CO missing from the gas phase; *Caselli et al. 1999; Bergin et al. 2002*
- Keto & Caselli (2010) found that the desorption rate due to cosmic ray strikes, *Hasegawa & Herbst (1993)*, should be increased by a factor of 30.
- Other mechanisms to release CO:
 - Photodesorption with UV photons Oberg et al. 2007, 2009; Muñoz Caro et al. 2010; Fayolle et al. 2011; Muñoz Caro et al. 2016
 - formation of H2 Takahashi & Williams 2000
 - non canonical explosions *Rawlings et al. 2013*
 - direct cosmic ray sputtering Dartois et al. 2015
 - cosmic ray induced explosive chemical desorption *Shen et al. 2004*
 - chemical desorption Dulieu et al. 2013
 - impulsive spot heating on grains Ivlev et al. 2015
 - Binding energies?

CO in starless and prestellar cores

- Density, temperature profile of pre-stellar core, from *Keto & Caselli 2010*
- CO ices deposited at $6K \rightarrow$ weakly bound + holes
- Binding energy is set by the deposition temperature.

CO in prestellar cores

- Chemical model following density/temperature Keto & Caselli 2010
- Nahoon time dependent model + adsorption and desorption of CO (ONLY!!! NO REACTIONS WITH CO OR OTHER DESORPTION MECHANISMS!!!)

CO with different binding energies/ t=10⁴ years

CO in prestellar cores

- Chemical model following density/temperature Keto & Caselli 2010
- Nahoon time dependent model + adsorption and desorption of CO (ONLY!!! NO REACTIONS WITH CO OR OTHER DESORPTION MECHANISMS!!!)

• CO with different binding energies/ t=10⁵ years

CO in prestellar cores

- low binding energies for CO→ changes the depletion of CO in dense cores
- rate equation model → cannot compute the depletion of CO due to the distribution of binding energies on the last layer of the ices.

Conclusions

- Laboratory: TPD show binding energies of already reorganized ices.
 Looking at details → some constrains on binding energies and mobility
- MC simulations → weakly bound CO are present and show slow diffusion?
- Deposition temperature sets the binding energies
- \rightarrow Reproducing TPD for other species. Thesis M. Minissale & F. Dulieu
- \rightarrow estimate binding energies with number of neighbors.
- CD depends on 1) enthalpy of formation 2) binding energy 3) degrees of freedom 4) mass of the products
- bare surfaces → measurements

 on icy surfaces → upper limits? And we are missing the binding
 energies of intermediate (Wakelam 2016) → CD is not efficient for
 methanol on ice.

Thank you

A. Tielens F. Dulieu M. Minissale G. Munoz Caro Y. Chen R. Martin Domenech