The atomic to molecular Hydrogen transition: A major step in the understanding of PDRs.

Introduction

The multiple facets of molecular Hydrogen a new picture of PDRs provided Herschel observations Conclusion and perspectives

- * Photodesorption
- Conversion of UV * to IR photons

IR – submm – mm : discrete transitions

Chemistry :
$$\frac{d[X]}{dt} = F - D[X] = 0$$

Gas phase: reaction rate coefficients are radiation field and temperature dependent

Dust and gas/solid interface: at least for H₂ formation

Thermal balance : $\Delta G = H - C = 0$

Heating: photoelectric effect, collisional de-excitation of pumped H₂, cosmic rays, chemical formation through exothermic reactions

Cooling: radiative emission following collisional excitation

kinetic energy => radiative energy Solve the detailed balance (collisional excitation, radiative emission/pumping) endothermic chemical reactions Gas-grain coupling

IR – submm – mm : discrete transitions

Chemistry :
$$\frac{d[X]}{dt} = F - D[X] = 0$$

Gas phase: reaction rate coefficients are radiation field and temperature dependent

Dust and gas/solid interface: at least for H_2 formation

Thermal balance : $\Delta G = H - C = 0$

Heating: photoelectric effect, collisional de-excitation of pumped H₂, cosmic rays, chemical formation through exothermic reactions

Cooling: radiative emission following collisional excitation

kinetic energy => radiative energy Solve the detailed balance (collisional excitation, radiative emission/pumping) endothermic chemical reactions Gas-grain coupling

IR – submm – mm : discrete transitions

Chemistry :
$$\frac{d[X]}{dt} = F - D[X] = 0$$

Gas phase: reaction rate coefficients are radiation field and temperature dependent

Dust and gas/solid interface: at least for H_2 formation

Thermal balance : $\Delta G = H - C = 0$

Heating: photoelectric effect, collisional de-excitation of pumped H₂, cosmic rays, chemical formation through exothermic reactions

Cooling: radiative emission following collisional excitation kinetic energy => radiative energy Solve the detailed balance (collisional excitation, radiative emission/pumping) endothermic chemical reactions Gas-grain coupling

Inputs /outputs

The Meudon PDR code @ <u>http://ism.obspm.fr</u>

Inputs /outputs

Benchmark exercise : Röllig et al. 2007, A&A 467, 187

Physics of H_2 + photons with hv < 13.6eV

by Wolniewicz et al. 1998, ApJS 115, 293

Full infrared spectrum of H₂

Electric quadrupole ($\Delta J = 0, \pm 2$) + magnetic dipole ($\Delta J = 0$) transitions available within X ¹ Σ ⁺ ground electronic state (Pachucki + Komasa 2011, PRA 83, 032501) (Roueff et al 2019, A&A, in press)

302 bound levels (with v=14, J=4)

4711 transitions

10⁻³ to 10⁻⁴ cm⁻¹ wavenumber accuracy which translates to $\approx 10^{-7}$ - 10⁻⁸ µ for the wavelengths (Pachucki et al. submitted to PRA).

 $\Delta v=1$, excited J transitions have larger MD emission probabilities than EQ values.

being included in Meudon PDR code to be updated for future JWST searches

modelling of interstellar H₂

Statistical equilibrium of v, J levels within X 14

- ***** collisions with H, He, H⁺, e, H₂, ...
- * radiative cascades
- v, J dependent chemistry (gas phase + surface)

UV pumping (radiative transfer)

Line self-shielding + dust shielding

Coupling to cooling / heating

- Formation from H + H on grain surfaces releases ~ 4.5eV to be shared between H₂ internal, kinetic and grain energies
- Collisions with H, He, ... may lead to cooling if $A_{v'J'->v",J"} > k^{H}_{v'J'->v",J"} n(H) + k^{He}_{v'J'->v",J"} n(He) + ... where kinetic$ energy from excitation collisions istransferred into radiative energy orheating if collisional desexcitation >radiative quenching

modelling of interstellar H₂

Statistical equilibrium of v, J levels within X 14

- * collisions with H, He, H⁺, e, H₂, ...
- * radiative cascades
- v, J dependent chemistry (gas phase surface)

UV pumping (radiative

* Line self-shield

Coupling to cooling /

Formation from H + releases ~ 4.5eV to be internal, kinetic and grade

* Collisions with H, He, ... may lead to cooling if $A_{v'J'->v",J"} > k^{H_{v'J'->v",J"}} n(H) + k^{He_{v'J'->v",J"}} n(He) + ... where kinetic$ energy from excitation collisions istransferred into radiative energy orheating if collisional desexcitation >radiative quenching

$$\frac{dn(\mathbf{H}_2)}{dt} = \frac{1}{2}R_{\mathbf{H}}n(\mathbf{H})$$
$$R_{\mathbf{H}} = s < \sigma n_d > \bar{v}_{\mathbf{H}}$$

 $< \sigma n_d >$ is the mean cross section of dust grains per unit volume

Assuming identical spherical dust grains of radius a

$$\langle \sigma n_d \rangle = \frac{3}{4} \times \frac{1.4m_{\rm H}G}{\rho_d} \times \frac{1}{a} \times n_{\rm H}$$

With G : dust to gas mass ratio $\approx 10^{-2}$ ρ_d : volumic mass of dust $\approx 3~g~cm^{-3}$ a = 0.1 μm

$$R_{\rm H} = 1.6 \times 10^{-16} \times s(T_d, T_K) \times \sqrt{\frac{T_K}{300}}$$

 \approx Tielens & Hollenbach 1985, ApJ 291: 722

 $s = \text{sticking coefficient} \le 1$, depends on T_d and T_K (Hollenbach & McKee 1979)

With the Mathis et al. (1977) dust grain size power law distribution $\approx a^{-3.5}$,

$$<\sigma n_d>=\frac{3}{4}\times\frac{1.4m_{\rm H}G}{\rho_d}\times\frac{1}{\sqrt{a_{min}\cdot a_{max}}}\times n_{\rm H} \longrightarrow R_{\rm H} = 4.8\times10^{-16}\times s(T_d,T_K)\times\sqrt{\frac{T_K}{300}}$$

with $a_{min} = 3 \text{ nm}$, $a_{max} = 0.3 \mu$

The chemical phases of Photodissociation regions

Langmuir-Hinshelwood / Physisorption

- ♦ binding energy ≈ 658 K
- diffusion energy ≈ 510 K
 - → Formation of H₂ is efficient only in a narrow range of dust temperatures

Eley-Rideal / Chemisorption

 binding energy: several thousands K efficient at the edge of PDRs
 Cazaux & Tielens, ApJ575, L29, 2002

Langmuir-Hinshelwood / Physisorption

- ♦ binding energy ≈ 658 K
- diffusion energy ≈ 510 K
 - → role of temperature fluctuations on small grains help (Bron et al. 2014, A&A 569, A100)

Eley-Rideal / Chemisorption

 binding energy: several thousands K efficient at the edge of PDRs chemisorption threshold : 300 K (to reach a chemisorption site)

The efficiency of the **LH** mechanism depends on **grain** temperatures The efficiency of the **ER** mechanism depends on the **gas temperature**

when H_2 heats the gas \rightarrow positive loop to form H_2 and heat the gas

Heating by H₂

For high densities, H₂ may convert UV photon energy into kinetic energy

Two archetypal PDRs

Herschel GTKPs observations of two nearby, bright galactic PDRs : Orion Bar (Hexos, PI T. Bergin), and NGC 7023 NW (WADI, PI V. Ossenkopf-Okada)

Rotationally excited CO

***** In addition to HIFI, SPIRE, PACS Herschel data:

observations from Spitzer, ISO, CFHT, IRAM-PdB, ...

Observational constraints

Full ¹²CO ladders (4-3 to ~ 20-19), H₂ ro-vibrational lines, ¹³CO, CH⁺, HCO⁺, C⁺, O, HD

Total: ~ 40 lines

Astrophysical knowledge

Properties of illuminating stars / clusters is known \rightarrow UV field intensity is known a priori NGC 7023 NW: G0 ~ 2600 Orion Bar: G0 ~ 2×10⁴

Modelling: difficult (impossible) to reproduce CO excitation in constant density models

→ isobaric PDR models

Two archetypal PDRs

A new picture of PDRs

use of a grid of isobaric PDR models

Only 2 free parameters:

- thermal pressure
- beam filling/geometrical factor

Allows to consistently satisfy the constraints:

~20 constraints used in the fit

(+6 other successfully reproduced a posteriori)

Excited CO, H₂, CH⁺, HD, HCO⁺, ...

➡ High thermal pressures ~10⁸ K cm⁻³

but does not reproduce tracers in the atomic/H II region or deep inside the cloud

Warm compressed layer at the edge of PDRs

far-reaching effects of H₂ formation

effect of the chemisorption threshold

Stronger impact on excited CO lines than on H₂ lines !

Controls the amount of warm molecular gas (1000-100 K) \rightarrow new active chemistry

far-reaching effects of H₂ formation

⇒ surmounting activation barriers: $O + H_2(v,J) \Rightarrow OH + H$ (3241 K) $OH + H_2(v,J) \Rightarrow H_2O + H$ (1751 K)

far-reaching effects of H₂ formation

~ 50% of CO: 19-18 emission comes from a region in front of the C/CO transition

warm chemistry at work at the edge

Formation of H₂ occurs in a region:

- high temperature
- UV photons (thanks to an efficient formation rate)

chemical reaction rate dependent on H₂(v,J): state-dependent chemistry

H₂ internal energy used to overcome endothermicity / activation thresholds warm chemistry at the edge of PDRs leads to the formation of CO via OH and CH⁺

relation between p and UV intensity

Comparison to other PDRs

The UV radiation field seems to be responsible for the high pressures at the edge of PDRs

Goicoechea et al. (2016, Nature 537, 207)

- UV photons can bring the energy to excite CO in PDRs
- no need of additional hypothesis (additional heating sources, clumps, ...)
- the molecular edge of PDRs is characterized by high pressures maintained dynamically

Link between UV field intensity and gas pressure at the edge of PDRs found in other lines of sight (eg. Trumpler 14 in Carina)

Wu, Bron et al. 2018, A&A 618, A53

Link between UV field intensity and gas pressure at the edge of PDRs found in other lines of sight (eg. Trumpler 14 in Carina)

Wu, Bron et al. 2018, A&A 618, A53

Emphasis on H_2

Introduction of detailed H₂ formation/excitation/destruction mechanisms

under high density and high radiation field conditions, radiative energy can be converted into kinetic energy

efficient heating at the edge of PDRs

- \implies positive loop to form H₂ and heat the gas
- \blacksquare H₂ state dependent chemistry at work (reactions with C⁺, S⁺, O, C, N ...)

Far reaching effects of H₂

- CO formation channel through CH⁺ + O, OH + C⁺
- excited CO transitions are emitted before the C+/C/CO transition
- no additional hypothesis (clumps, shocks, ...) required

Link between the strength of the impinging radiation field and gas pressure applicable from diffuse/translucent clouds to strong PDRs

For the future: observations

another promising source: Herschel 36 in the bright Messier 8 face-on PDR (Rachford et al. 2014, ApJ 786, 159, Oka et al. 2013, ApJ 773, 42, Tiwari et al. 2019, A&A 626, A28)
→ talk by Tiwari at 16:55 : link to hydrocarbon chemistry

preparing JWST (spatial resolution ≈ 10⁻³ pc in the Orion bar) allows to resolve the hot layer of PDRs JWST Early Release Science program: radiative feedback from massive stars (PIs: O. Berné, E. Habart, E. Peeters)

Access to main key processes in PDRs

- H₂ formation rate
- Photo-electric heating & H₂ heating rates
- warm chemistry

For the future: modelling efforts

- → introduce PAHs, photo-desorption and more complex surface chemistry talks of C. Joblin, P. Bréchignac, F. Dulieu, S. Cazaux, …
- → new class of models

UV photons can induce compression through photoevaporation

- Extend the studies for small clumps inside HII regions (e.g. Bertoldi & McKee 1990) to the edge of larger scale molecular clouds (Bron et al. 2018, arxiV, Kirsanova & Wiebe 2019, MNRAS 486, 2525)
 - \rightarrow impact on the PDR structure ?

For the future: debating with Xander on the formation of H₂

Eley-Rideal / Photoinduced polycyclic aromatic hydrocarbon dehydrogenation. (Castellanos et al. A&A616, A167, 2018)

and specific thanks to my young colleagues

Emeric Bron, Franck Le Petit, Jacques Le Bourlot

Stochastic processes

New formalism to simulate H₂ formation

- Master equation formalism to consider fluctuations of the dust temperature and of the surface chemical state
- PDF of dust temperature + populations of adsorbed species on grains
- Mean formation rate coupled to the Meudon PDR code

Observations ISO/Spitzer (PDRs)

- Efficient formation on small grains
- Grains spend most time being cold
- Langmuir-Hinshelwood alone could be sufficient in most PDRs