

PROduction of Dust In GalaxIES (PRODIGIES)

Ciska Kemper European Southern Observatory & Academia Sinica

The dust budget problem

 $z\sim 6: 10^{8-9} M_{sun}$ of dust

cannot be explained with stellar dust sources: AGB stars, supernovae

Dust production in galaxies

- Are AGB stars responsible for the interstellar dust reservoir of galaxies?
- How well do we know the mass of the interstellar dust reservoir of galaxies?
- Does star formation activity affect the mineralogy of the interstellar dust reservoir?
- What kind of dust forms in the extreme conditions of AGN winds?

Galactic dust production rate by AGB stars

SAGE-LMC: The Large Magellanic Cloud in the infrared

- Global view of nearby galaxy
- Z ~ 0.5 Z_o
- D = 50 kpc
- 8.5 million IR point sources
- IRAC-[3.6]; [4.5]; [5.8];
 [8.0]
- MIPS-[24]; [70]; [160]

(Meixner et al. 2006)

SAGE-SMC: The Small Magellanic Cloud in the infrared

(Gordon et al. 2011)

- Z ~ 0.2 Z_o
 D = 60 kpc
- ~2 million infrared point sources

Total dust production

(Srinivasan et al. 2016)

AGB Dust production in other galaxies: M32

5 most extreme sources: 30% of DPR

AGB Dust production in other galaxies: M33

id=5911 id=18260 -15 log(λF_{λ} [W m⁻²] -16J-K=1.34 mag J-K=2.48 mag $\tau = 0.22$ $\tau = 0.65$ $\dot{M} = 9.6 \times 10^{-6} M_{\odot}/vr$ $\dot{M} = 1.1 \times 10^{-5} M_{\odot}/vr$ -17L=3.5×104 L_c L=1.7×104 id=9791 id=12831 -15log(λF_{λ} [W m⁻²] -16 J-K=3.5 mag J-K=4.41 mag $\tau = 1.15$ $\tau = 1.60$ $\dot{M} = 8.5 \times 10^{-6} M_{\odot}/vr$ $\dot{M} = 4.0 \times 10^{-5} M_{\odot}/vr$ -17L=1.5×104 L_c L=3.1×104 10 1 10 $\lambda [\mu m]$ $\lambda [\mu m]$

> (Javadi et al. 2013) (Srinivasan et al. in prep.)

AGB dust production in the Solar Neighborhood

- Volume-limited sample (2 kpc)
 - All-sky IR surveys (IRAS, WISE, 2MASS, AKARI)
 - High dynamic range
 - Nearest targets are extended and sometimes saturated
 - Distances and therefore luminosities not well known
 - But: statistics is your friend
 - And: most prolific dust producers are the brightest 60 micron sources
- DPR determination using GRAMS
- Extrapolation to entire Milky Way

DPR < 2 kpc:

 $4.1 \mathrm{x} 10^{-5} \mathrm{M_{sun}/yr}$

(Trejo et al. in prep.)

The Nearby Evolved Stars Survey (NESS)

Goal: to spatially resolve the mass loss history

JCMT+APEX: 39 nearest dusty AGB stars + wedding-cake survey within 2 kpc (400 stars)

submm continuum + CO line transitions

565 hrs JCMT (PI: Scicluna)60 hrs APEX (PI: Wallstrom)90 hrs Nobeyama (PI: Scicluna)

future plans: SMA/ALMA-ACA SOFIA 10 micron spectroscopy

The Nearby Evolved Stars Survey (NESS)

- Total gas and dust return to ISM
- Gas-to-dust ratios
- Mass-loss history
- Submm dust properties
- 13C0/12C0
- Galactic dust production
- Deviations from spherical symmetry

(Scicluna et al. in prep.)

(Wallström et al. in prep.)

The Nearby Evolved Stars Survey (NESS)

The detached shell in U Ant in submm continuum emission

(Dharmawardena et al. 2019)

Radius (nc)

The interstellar dust mass

Determining the interstellar dust mass

- Modified black body
- Opacity: $\lambda^{-\beta}$
- Single or few temperature components

(Shetty et al. 2009)

Determining the interstellar dust mass

Determining the interstellar dust mass

(Fanciullo et al. in prep.)

Comparison DPR with ISM dust and SFR in the LMC

(Skibba et al. 2012, Gordon et al. 2014)

•ISM dust mass: $(7.3 \pm 1.7) \times 10^5 M_{\odot}$ •Dust MLR: (2-4) $\times 10^{-5} M_{\odot}/yr$ •Star Formation Rate: $0.38 M_{\odot}/yr$ (gas) $\rightarrow 8 \times 10^{-4} M_{\odot}/yr$ (dust)

- •replenishment time scale: 10¹⁰ yr (comparable to age of LMC)
- •astration time scale: 10⁸ yr

Not taken into account: Dust destruction & formation

Modelling the dust production history in the LMC

theoretical dust yields of AGB stars over the entire SFH of the LMC no interstellar dust destruction

ISM dust comparison

Table 9 Total \dot{M}_d by Population		
Population	Total \dot{M}_d (×10 ⁻⁶ M_{\odot} yr ⁻¹)	Percent of Total
All Sources	21.1 ± 0.6	100.0%
C-rich AGBs	13.64 ± 0.62	64.6%
O-rich AGBs	5.5 ± 0.2	26.0%
RSGs	2.0 ± 0.1	9.4%
Extreme AGBs	15.7 ± 0.6	74.2%

MW ISM composition

(Tielens et al. 2005)

The mineralogy of AGN dust

Spectral Energy Distributions

(Pier & Krolik 1992)

Early detections of silicates in emission

⁽Hao et al. 2005; Sturm et al. 2005; Siebenmorgen et al. 2005)

Porosity shifts and weakens 10 micron feature

(lati et al. 2001)

(Li et al. 2008)

Porous silicates associated with 3 AGN

(Li et al. 2008)

(Smith et al. 2010)

Optical depth effects

(Nikutta et al. 2009)

Dust formation in disk wind (Elvis et al. 2002)

Dusty disk wind as torus *(Elitzur & Schlossman* 2008)

Mineralogy: composition differs from Galactic dust

(Markwick-Kemper et al. 2007)

Further fits

(Srinivasan et al. 2017)

Results for a small sample

(Srinivasan et al. 2017)

PG sample from Petric et al. (2015)

Herschel or MIPS 70 micron or AKARI 60 micron photometry to constrain continuum

IRS spectra with clear dust emission features

=> 53 objects

Mineralogy: gehlenite (Al-Ca-silicates) or SiC in NGC 1068?

(Jaffe et al. 2004)

(Köhler & Li 2010)

Spatial variations in NGC 1068 silicates: sizes and composition

(Rhee & Larkin 2006)

(Poncelet et al. 2006)

• Dust budget problem: interstellar dust mass > ∑ AGB dust production

- Dust budget problem: interstellar dust mass > Σ AGB dust production
- ISM dust is not AGB dust
 - The dust composition of AGB stars deviates from ISM dust composition.
 - The time-integrated dust production rates match the interstellar dust masses, but destruction and astration is not taken into account

- Dust budget problem: interstellar dust mass > Σ AGB dust production
- ISM dust is not AGB dust
 - The dust composition of AGB stars deviates from ISM dust composition.
 - The time-integrated dust production rates match the interstellar dust masses, but destruction and astration is not taken into account
- Submm dust masses are possibly overestimated
 - The far-infrared opacities are temperature dependent
 - Typical opacities used differ from laboratory measurements by a factor of ~10 at submm wavelengths

- Dust budget problem: interstellar dust mass > Σ AGB dust production
- ISM dust is not AGB dust
 - The dust composition of AGB stars deviates from ISM dust composition.
 - The time-integrated dust production rates match the interstellar dust masses, but destruction and astration is not taken into account
- Submm dust masses are possibly overestimated
 - The far-infrared opacities are temperature dependent
 - Typical opacities used differ from laboratory measurements by a factor of ~10 at submm wavelengths

Solutions?

- re-evaluation interstellar dust masses; comparing dust masses at the same wavelength; taking into account abundance constraints
- alternative sources of dust: interstellar grain growth and non-stellar sources

Silicates in AGN: optical depth, emission & absorption

(Shi et al. 2006)

A case of extreme emission: host galaxy hardly detected

