Investigating Interstellar Dust in Local Group Galaxies with New UV Extinction Curves

Geoffrey Clayton
LSU
THE HERSCHEL INVENTORY OF THE AGENTS OF GALAXY EVOLUTION IN THE MAGELLANIC CLOUDS, A HERSCHEL OPEN TIME KEY PROGRAM

1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; meixner@stsci.edu
2 Department of Physics and Astronomy, The Johns Hopkins University, 366 Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218, USA
3 CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Grif-sur-Yvette, France
4 CNRS, Observatoire de Paris-Lab. GEPi, Bat. 11, 5, Place Jules Janssen, F-92195 Meudon Cedex, France
5 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
6 Raytheon Company, 1151 East Herrams Road, Tucson, AZ 85756, USA
7 Department of Astronomy, 475 North Charter Street, University of Wisconsin, Madison, WI 53706, USA
8 Department of Physics and Astronomy, Louisiana State University, 233-A Nicholson Hall, Tower Drive, Baton Rouge, LA 70803-4001, USA
9 CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France
10 Université de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse Cedex 4, France
11 Department of Astronomy, Laboratory for Millimeter-Wave Astronomy, University of Maryland, College Park, MD 20742-2421, USA
12 Université de Strasbourg, Observatoire Astronomique de Strasbourg, 11, Rue de l’Universite, F-67000 Strasbourg, France
13 CNRS, Observatoire Astronomique de Strasbourg, UMR7550, F-67000 Strasbourg, France
14 Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
15 Oak Ridge Associated Universities (ORAU), Oak Ridge, TN 37831, USA
16 Sterrewacht Leiden, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands
17 Max-Planck-Institut für Radioastronomie Auf dem Hügel 69, D-53121 Bonn, Germany
18 Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
19 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
20 Center for Astrophysics, 60 Garden Street, MS 67, Harvard University, Cambridge, MA 02138, USA
21 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
22 Department of Astronomy, University of Virginia, and National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
Understanding Dust 30 Years After CCM
(A Symposium in Honor of Geoff Clayton's 65th Birthday)

University of Colorado, University Memorial Center
Boulder, Colorado, USA
August 4-6, 2019
INTERSTELLAR DUST IN THE LARGE MAGELLANIC CLOUD

GEOFFREY C. CLAYTON1 AND P. G. MARTIN
David Dunlap Observatory, University of Toronto
Received 2804 January 1; accepted 2804 July 26

ABSTRACT

This paper presents extensive observations of the properties of interstellar dust in a different physical environment than the Galaxy, namely the Large Magellanic Cloud. Extinction and polarization analysis of 12 reddened stars spread across the LMC shows that in the optical and infrared the dust characteristics are remarkably similar to those in the Galaxy. The wavelength dependence of the polarization and the polarization efficiency, p/E(B-V), are also comparable to Galactic values. On the other hand, along the same lines of sight there are measurable differences from star to star in the ultraviolet. On average, the ultraviolet extinction in the LMC is also different than the Galaxy, having proportionately higher far-ultraviolet extinction and a weaker 2200 Å bump. This confirms and extends previous results based largely on ultraviolet observations of the 30 Dor region. Average extinction curves were calculated for stars outside the 30 Dor region to see if the latter is representative of the strophic environment. Outside the 30 Dor region the 2200 Å bump is somewhat larger and the amount of far-ultraviolet extinction somewhat less, thus being closer to the Galactic behavior. However, these regional differences are only marginally significant.

The dust-to-gas ratio, E(B-V)/N_H, in the LMC is several times lower than the Galactic value, which might suggest less net efficiency of dust production in the LMC. However, the amount of dust produced is limited by the abundance of the condensable species. Taking into account the lower CNO abundances found for the LMC, the dust-to-gas ratio, E(B-V)/N_H, is, in the same way within a factor of 2 and the net dust formation efficiency may thus be rather similar in these two galaxies. The lower 2200 Å bump strength in the LMC might similarly reflect a general deficiency of carbon relative to the other heavy elements. A relationship between ultraviolet extinction properties and heavy element abundances in the 30 Dor, LMC, and SMC is noted.

Subject headings: galaxies: Magellanic Clouds — interstellar: matter — polarization — ultraviolet: general

1 Guest Observer with the International Ultraviolet Explorer Satellite, which is sponsored and operated by the National Aeronautics and Space Administration, by the Science Research Council of the United Kingdom, and the European Space Agency.

I. INTRODUCTION

Observation of the differing physical conditions under which interstellar dust exists provides clues to the mechanisms of formation and destruction of grains because attendant differences in the size, shape, and composition of the grains are manifested in variations in the characteristics of the extinction and polarization produced. Detection of such variations from galaxy to galaxy, or with position in a galaxy, is therefore very important. The LMC environment could well be different than the Galaxy for the evolution of grains.

The first information concerning the nature of the dust came from observations of interstellar polarization and optical reddening. Measurements by Virvianathan (1966), Mathewson and Ford (1975), and Schmidt (1976) of more than 200 LMC stars showed, as far as unified observations could, that the polarization efficiency, p/E(B-V), in the LMC is the same as in the Galaxy. Koornneef (1982), and Morgan and Nandy (1982) both find values of R very close to the Galactic value from IUE photometry of LMC supergiants. Observations using the Netherlands Astronomical Satellite (AXS) suggested that the ultraviolet extinction in the LMC might be anomalous (Borgman, van Duinen, and Koornneef 1975; Koornneef 1977; Koornneef 1980). This suggestion was confirmed by observations made using IUE, which clearly showed that the 2200 Å extinction feature is smaller and the far-ultraviolet extinction higher than is typically seen in the Galaxy (Nandy and Morgan 1978).

This previous work in the LMC consists of a number of different types of observation each using a different sample of stars. Often only an average extinction curve is derived for a limited region in the LMC. The present study was undertaken to produce a homogeneous set of observations covering the greatest possible range in wavelength of both extinction and polarization for a large sample of stars spread throughout the LMC. Much care was taken to choose only "normal" stars whose intrinsic characteristics would affect the observations as little as possible. An advantage of this new sample is that it allows direct comparison of the optical and ultraviolet extinction and also the polarization properties along a single line of sight. This permits an investigation of how variations seen in different wavelength regions are related and a search for differences in the dust from place to place in the LMC.

A portion of this study based on measurements of the wavelength dependence of LMC polarization has already been published (Clayton, Martin, and Thompson 1983, hereafter CMT). 2

II. OBSERVATIONS AND REDUCTIONS

a) The Sample

The stars chosen for this program are normal, mostly B type, supergiants, known to be members of the LMC. A subset consists of unreddened stars of the same spectral types as the reddened members, although it might seem time consuming to collect data on unreddened stars, these are essential to the process of obtaining reliable extinction curves. Known
Collaborators

Karl Gordon (STScI)

Derck Massa (SSI)

Edward Fitzpatrick (Villanova)

Michael Wolff (SSI)

Luciana Bianchi (JHU)

Phil Massey (Lowell Obs.)

Kathryn Neugent (Lowell Obs.)
$R_V \equiv \frac{A_V}{E_{B-V}}$,

Cardelli, Clayton & Mathis (1989)
CCM
\[\propto a^{-3.5}, \quad \text{where} \quad a_{\text{min}} \leq a \leq a_{\text{max}} \]
Clayton et al. 2003
Declination (J2000)

SPIRE 250 μm

10^{-5} 10^{-4} 10^{-3} Jy arcsec^{-2}

RA (J2000)

IRAS 100 μm

CO

CO

HI

Fritz et al. 2012
From Dust In The Local Group

Fig. 6.— (Left) α_{CO} as a function of metallicity. The gray region shows the range of commonly-used α_{CO} for the Milky Way and the dashed line indicates the value argued for by Draine et al. (2007) studying integrated photometry of SINGS galaxies.

(Right) The gas-to-dust ratio δ_{GDR} as a function of the same metallicities. The dashed line indicates a linear scaling.

Fig. 7.— α_{CO} as a function of metallicity. Blue measurements show α_{CO} from virial mass calculations using high-resolution ($\lesssim 30$ pc FWHM) CO mapping. Red measurements show α_{CO} from infrared observations. The "ULIRGS" label indicates roughly the region of parameter space occupied by the dense, excited gas in merger-induced starbursts (Downes & Solomon 1998).

Along standing discrepancies exist between IR-based results and high-resolution virial mass measurements based on CO observations. Using virial masses, Wilson (1995), Rosolowsky et al. (2003), and Bolatto et al. (2008) all found weak or absent trends in X_{CO} as a function of metallicity. The blue points in Figure 7 show virial mass results from CO observations with resolution better than 30 pc. The two approaches agree up to about the metallicity of M 33 or the LMC, and then strongly diverge in the SMC. This divergence is most easily understood if the additional H$_2$ traced by IR lies in an extended envelope outside the main CO emitting region (Bolatto et al. 2008). Such an envelope can reconcile the virial Gas-to-Dust ratio δ_{GDR} across the Local Group.

Recent work with same technique shows $\delta_{\text{GDR}} \sim Z$ across the Local Group.

What have we learned about the DGR?

By not solving for X_{CO} and δ_{GDR} independently:

- Resolved δ_{GDR} approx. linear with Z (or slightly steeper).
Summary

• MW, LMC, SMC, M31, M33
• Extinction vs Attenuation
• How does UV extinction vary from galaxy to galaxy and across an individual galaxy?
• Different global characteristics such as metallicity and star formation activity.
• Grain components and size distributions for use in RT modeling of other galaxies.