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ABSTRACT

This paper presents extensive observations of the properties of interstellar dust in a different physical
environment than the Galaxy, namely the Large Magellanic Cloud. Extinction and polarization analysis of 12
reddened stars spread across the LMC shows that in the optical and infrared the dust characteristics are
remarkably similar to the Galaxy. The wavelength dependence of the polarization and the polarization effi-
ciency, p/E(B—V), are also comparable to Galactic values. On the other hand, along the same lines of sight
there are measurable differences from star to star in the ultraviolet. On average, the ultraviolet extinction in
the LMC is also different than the Galaxy, having proportionately higher far-ultraviolet extinction and a
weaker 2200 A bump. This confirms and extends previous results based largely on ultraviolet observations of
the 30 Dor region. Average extinction curves were calculated for stars outside the 30 Dor region to see if the
latter is representative despite the atypical environment. Outside the 30 Dor region the 2200 i bump is some-
what larger and the amount of far-ultraviolet extinction somewhat less, thus being closer to the Galactic
behavior. However, these regional differences are only marginally significant.

The dust-to-gas ratio, E(B—V)/Ny in the LMC is several times lower than the Galactic value, which might
suggest less net efficiency of dust production in the LMC. However, the amount of dust produced is limited by
the abundance of the condensable species. Taking into account the lower CNO abundances found for the
LMC, the dust-to-gas ratio, E(B—V)/N¢yo, is the same within a factor of 2 and the net dust formation effi-
ciency may thus be rather similar in these two galaxies. The lower 2200 A bump strength in the LMC might
similarly reflect a general deficiency of carbon relative to the other heavy elements. A relationship between
ultraviolet extinction properties and heavy element abundances in the Galaxy, LMC, and SMC is noted.
Subject headings: galaxies: Magellanic Clouds — interstellar: matter — polarization — ultraviolet: general

I. INTRODUCTION

Observation of the differing physical conditions under which
interstellar dust exists provides clues to the mechanisms of
formation and destruction of grains because attendant differ-
ences in the size, shape, and composition of the grains are
manifested in variations in the characteristics of the extinction
and polarization produced. Detection of such variations from
galaxy to galaxy, or with position in a galaxy, is therefore very
important. The LMC environment could well be different than
the Galaxy for the evolution of grains.

The first information concerning the nature of the dust came
from observations of interstellar polarization and optical
reddening. Measurements by Visvanathan (1966), Mathewson
and Ford (1970), and Schmidt (1976) of more than 200 LMC
stars showed, as far as unfiltered observations could, that the
polarization efficiency, p/E(B— V), in the LMC is the same as
in the Galaxy. Koornneef (1982), and Morgan and Nandy
(1982) both find values of R very close to the Galactic value
from JHK photometry of LMC supergiants. Observations
using the Netherlands Astronomical Satellite (ANS) suggested
that the ultraviolet extinction in the LMC might be anomalous
(Borgman, van Duinan, and Koornneef 1975; Koornneef 1977,
1978). This suggestion was confirmed by observations made
using IUE, which clearly showed that the 2200 A extinction
feature is smaller and the far-ultraviolet extinction higher than
is typically seen in the Galaxy (Nandy and Morgan 1978;

' Guest Observer with the International Ultraviolet Explorer Satellite
whicl sponsored and operated by the National Aeronautics and Space
Administration, by the Science Research Council of the United Kingdom, and
the European Space Agency.

Nandy et al. 1980; Koornneef and Code 1981, hereafter KC;
Nandy et al. 1981, hereafter NMW).

This previous work in the LMC consists of a number of
different types of observation each using a different sample of
stars. Often only an average extinction curve is derived for a
limited region in the LMC. The present study was undertaken
to produce a homogeneous set of observations covering the
greatest possible range in wavelength of both extinction and
polarization for a large sample of stars spread throughout the
LMC. Much care was taken to choose only “normal” stars
whose intrinsic characteristics would affect the observations as
little as possible. An advantage of this new sample is that it
allows direct comparison of the optical and ultraviolet extinc-
tion and also the polarization properties along a single line of
sight. This permits an investigation of how variations seen in
different wavelength regions are related and a search for differ-
ences in the dust from place to place in the LMC.

A portion of this study based on measurements of the wave-
length dependence of LMC polarization has already been
published (Clayton, Martin, and Thompson 1983, hereafter
CMT).

II. OBSERVATIONS AND REDUCTIONS
a) The Sample

The stars chosen for this program are normal, mostly B type,
supergiants, known to be members of the LMC. A subset con-
sists of unreddened stars of the same spectral types as the
reddened members; although it might seem time consuming to
collect data on unreddened stars, these are essential to the
process of obtaining reliable extinction curves. Known

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System
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Leroy etal. 2011 Local Group DGR
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Summary

MW, LMC, SMC, M31, M33

Extinction vs Attenuation

How does UV extinction vary from galaxy to galaxy and across an individual galaxy?
Different global characteristics such as metallicity and star formation activity.

Grain components and size distributions for use in RT modeling of other galaxies.



