The Life Cycle of Dust in Galaxies

Margaret Meixner Space Telescope Science Institute & Johns Hopkins University

Thanks to the Mega-SAGE Team: September 2015 http://sage.stsci.edu/

Thanks to the Mega-SAGE Team: September 2015 http://sage.stsci.edu/

The Large Magellanic Cloud

The Large Magellanic Cloud

Why does this galaxy have dust?

Life Cycle of Dust in Galaxies

Dwek, Zhkovska

Magellanic Clouds

- Proximity:
 - ~50 kpc Large Magellanic Cloud (LMC) (Schaefer 2008)
 - ~60 kpc Small Magellanic Cloud (SMC) (Szewczyk et al. 2009)
- Inclination of LMC $\sim 23^{\circ} 37^{\circ}$ (Subramanain & Subramanain)
- Stepping stone between galactic and extragalactic studies.
- Mean metallicity: (Russel & Dopita 1992; Asplund et al. 2004)
 - LMC: Z~0.5 x Z_ \odot
 - SMC: Z~0.2 x Z_ \odot
 - ISM during Universe's peak star formation epoch (z~1.5 Pei et al 1999)
 - Dust content (dust-to-gas ratio) lower: LMC~0.5xMW, SMC~0.1xMW
- Known tidal interactions between LMC and SMC, possibly the Milky Way.
- Long History of Studies & used as a proving ground:
 - Ideal Case study for a galaxy evolution (Bekki & Chiba 2005)

Spitzer Surveying the Agents of Galaxy Evolution (SAGE) & HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE)

Galliano 2008

LMC: Spitzer SAGE

IRAC 3.6 μ m: old (evolved) stellar populations IRAC 8.0 μ m: dust emission from ISM MIPS 24 μ m: new massive star formation

http://sage.stsci.edu/ Meixner et al. 2006

40 years Tielens ISM - Meixner

SMC: Herschel HERITAGE

Meixner et al 2013

LMC Dust Mass: $7.3\pm1.0 \times 10^5 M_{\odot}$

Roman-Duval et al. 2014

⁴⁰ years Tielens ISM - Meixner

SMC Dust Mass: $8.3\pm1.0 \times 10^4 M_{\odot}$

Gordon et al. 2014 Roman-Duval et al. 2014

Life Cycle of Dust in Galaxies

Dwek, Zhkovska

GRAMS:

Grid of Red supergiant and Asymptotic giant branch star ModelS:

Srinivasan et al. 2010

GRAMS:

Grid of Red supergiant and Asymptotic giant branch star ModelS:

Srinivasan et al. 2016, Riebel et al. 2012

Supernova 1987A (SN 1987A)

HST: Challis, Krishner

Herschel (far-infrared)

Herschel Finds Enormous Stores of Dust in Supernova 1987A ESA/NASA-JPL/Caltech/UCL/STScl

Images of SN1987A HST Chandra

Challis, Kirshner

Burrows et al. 2000

40 years Tielens ISM - Meixner

Confirmed by ALMA

Indebetouw et al. (2014)

Life Cycle of Dust in Galaxies

Dwek, Zhkovska

Life Cycle of Dust in Galaxies

Dwek, Zhkovska

Supernova Remnant, N49, in LMC

Supernova Remnants (SNRs) in LMC destroy dust

Badenes, Maoz, & Draine (2010), Temim et al.(2015)

Average lifetime of a dust grain in ISM

40 years Tielens ISM - Meixner

Life Cycle of Dust in Galaxies

Dwek, Zhkovska

Life Cycle of Dust in Galaxies

Dwek, Zhkovska

LMC Gas-to-Dust Ratio (GDR)

Roman-Duval et al. 2014

SMC Gas-to-Dust Ratio (GDR)

Roman-Duval et al. 2014

Metal Depletion onto Dust

Tchernyshyov et al. 2015

Metal Depletion onto Dust

Tchernyshyov et al. 2015

9/21/19

Tchernyshyov et al. 2015

SMC

Tchernyshyov et al. 2015

Metal Depletion onto Dust

Tchernyshyov et al. 2015

Life Cycle of Dust in Galaxies

Dwek, Zhkovska

Life Cycle of Dust in Galaxies

Dwek, Zhkovska

Young Stellar Object (YSO)

HST, S106; Hubble Heritage

YSO Evolutionary Stages

YSO Evolutionary Stages

SMC: YSO Candidates

X The picture can't be displayed.	X The picture can't be disp	played.	X The picture can't be displa	yed.
				area occupied
				area occupica
				by galaxies
				Sy Balances
· ·				
evolved		Vouna		modele
		young		models
$D_{\text{over ot al}}$ (2011)		Bolatto et al. (2007)		
Boyer et al. (2011)				D_{a} bits ills at al. (2000)
$D_{restruct}$ = $rest$ (2010)		Simon et al. (2007)		Robitallie et al. (2006)
Bonanos et al. (2010)		Jinon et al. (2007)		· ·
		Carlson et al (2011)		
		Calison et al. (2011)		

Sewilo et al. (2013)

SMC: ~1100 YSO Candidates

Sewilo et al. 2013

SMC: YSO properties Star Formation Rate (SFR)

Histogram of Stellar Mass

Luminosity Histogram

SFR ~ 0.06 M_{sun} / year

Sewilo et al. (2013)

Stage 0 YSO & Dust Clumps

×

HST, Carinae Smith et al.

SMC: YSOs and Dust Clumps

MCs inventory of dust

Item	LMC Value	SMC Value
ISM Dust mass	7.3x 10⁵ M _☉	8.3x 10⁴ M _☉
RSG & AGB & LBV Mass Loss return	2.5 x 10 ⁻⁵ M _☉ yr ⁻¹	4.2 x 10 ⁻⁶ M _☉ yr ⁻¹
Supernovae Dust production	~2 x 10 ⁻³ M _☉ yr ⁻¹	~1 x 10 ⁻³ M _☉ yr ⁻¹
Dust destruction by SNe	~2 x 10 ⁻² M _☉ yr ⁻¹	~1 x 10⁻² M _☉ yr⁻¹
Star formation rate	~0.1 M _☉ yr ⁻¹	~0.06 M _☉ yr⁻¹
-stellar astration of dust	~2 x 10⁻⁴ M _☉ yr⁻¹	~5 x 10⁻⁵ M _☉ yr⁻¹
Net Loss of Dust Dust growth rate in ISM?	~1.8 x 10 ⁻² M _☉ yr ⁻¹	~9.0 x 10 ⁻³ M _☉ yr ⁻¹

I would love some one to model the MCs inventory of dust

Item	LMC Value	SMC Value
ISM Dust mass	7.3x 10⁵ M _☉	8.3x 10⁴ M _☉
RSG & AGB & LBV Mass Loss return	2.5 x 10 ⁻⁵ M _☉ yr ⁻¹	4.2 x 10 ⁻⁶ M _☉ yr ⁻¹
Supernovae Dust production	~2 x 10 ⁻³ M _☉ yr ⁻¹	~1 x 10⁻³ M _☉ yr⁻¹
Dust destruction by SNe	~2 x 10⁻² M _☉ yr⁻¹	~1 x 10⁻² M _☉ yr⁻¹
Star formation rate	~0.1 M _☉ yr ⁻¹	~0.06 M _☉ yr⁻¹
-stellar astration of dust	~2 x 10⁻⁴ M _☉ yr⁻¹	~5 x 10⁻⁵ M _☉ yr⁻¹
Net Loss of Dust Dust growth rate in ISM?	~1.8 x 10 ⁻² M _☉ yr ⁻¹	~9.0 x 10⁻³ M _☉ yr⁻¹

Life Cycle of Dust in Galaxies

Dwek, Zhkovska

Far-IR detection of dust in SNe/SNR – will need Origins or SPICA T=22.6 K & 0.25 Msun ring dust SPI€A: SAFARI/B-BOP 0.100 Origins: OSS/B-BOP JWST T=21.2 K & 0.35 M =24.4 K & 0.14 Msur Flux (Jy) 0.010 0.001 10 100 1000

Wavelength (um)

Dwek, Zhkovska

Large Mission Studies for Decadal

×

Origins Space Telescope Margaret Meixner (STScI/JHU) Asantha Cooray (UC Irvine) ×

LynxHabexFeryal Özel (U. Arizona)Sara Seager (MIT)Alexey Vikhlinin (Harvard/CfA)Scott Gaudi (OSU)

LUVOIR Debra Fischer (Yale) Brad Peterson (OSU)

×

The picture can't be displaye

Origins: Spitzer-like minimal deployable design

wavelength coverage: 2.8-588 μm Telescope:

diameter: 5.9 m area: 25 m² (=JWST area) diffraction-limit: 30 μm temperature: 4.5 K Cooling: long life cryro-coolers

Agile Observatory for surveys: 60" per second Launch Vehicle:

Large, SLS Block 1, Space-X BFR Mission: 10 year propellant, serviceable

Orbit: Sun-Earth L2

Three Instruments

OSS: Origins Survey Spectrometer

-25-588 μm R~300, survey mapping -25-588 μm R~43,000, spectral surveys -100-200 μm R~325,000, kinematics

FIP: Far-infrared Imager Polarimeter

- 50 or 250 µm, Large area survey mapping
- 50 or 250 μm, polarimetry

MISC-T: Mid-Infrared Spectrometer Camera Transit -Ultra-Stable Transit Spectroscopy -2.8-20 μm R~50-295

× The picture can't be displaye

Mission Parameters & Programmatics

Parameter	Origins	SPICA
Scope	NASA Large Mission Study	ESA: M5 + JAXA:Strategic L
Wavelength Coverage	2.8 – 588 μm	12 – 350 μm
Telescope aperture, undeployed	5.9 m	2.5 m
Diffraction limit	30 µm	20 µm
Telescope/instrument temp With cyrocoolers	4.5 K / 50 mK	<8 K / 50 mK
Orbit	Sun-Earth L2	
Mapping Speed	60" per second	20"-60" per second
Life time	5 yrs req., 10 yr goal	3 yrs req., 5 yr goal
Decision date	Late 2020/ early 2021	June 2021
Launchedate	40 years Tielen 35 - Meixner	2032

Summary

- With SAGE and HERITAGE, we have an inventory of dust production, desctruction, ISM growth and star formation in the Magellanic Clouds
- A comprehensive dust evolution model of the Magellanic Clouds would be timely
- Dust evolution in galaxies is popular and being adopted in local galaxy models as well as cosmological simulations
- Future is bright with observational opportunities with JWST and hopefully *Origins* or SPICA.