# The hunt for hot corinos and WCCC objects in the OMC-2/3 filament

Mathilde Bouvier Université Grenoble Alpes, IPAG

Main collaborators: A. López-Sepulcre, C. Ceccarelli, C. Kahane, M. Imai, N. Sakai, S. Yamamoto, P.J. Dagdigian



Avignon Thursday, 5th September

**Mathilde Bouvier** 





## Star formation and molecular complexity





2- PROTOSTELLAR PHASE: collapsing, warm dense gas FORMATION OF COMPLEX MOLECULES



3- PROTOPLANETARY DISK PHASE: cold and warm dense gas SIMPLE & COMPLEX MOLECULES

 4- PLANETESIMAL FORMATION : grains agglomeration
5- PLANET FORMATION AND THE "COMET/ASTEROID RAIN" CONSERVATION AND DELIVERY OF OLD MOLECULES + LIFE



#### Caselli & Ceccarelli 2012

#### **Protostellar phase: Rich molecular chemistry**



Avignon Thursday, 5<sup>th</sup> September

Mathilde Bouvier





## Chemical diversity among Solar-type protostars



Mathilde Bouvier

Avignon

Thursday, 5<sup>th</sup> September

Spitzer

**IPAG** 

UNIVERSITÉ

Grenoble Alpes

The proto-Sun: An ancient hot corino ?

#### • What is at the origin of the observed protostellar chemical diversity ?

—> Need to study large samples of Solar-type protostars







The proto-Sun: An ancient hot corino ?

#### • What is at the origin of the observed protostellar chemical diversity ?

—> Need to study large samples of Solar-type protostars

#### • Where do Solar-type protostars form ?

- Low-mass (<  $8M_{\odot}$ ) star forming region —> known majority of hot corinos and WCCC objects
- High- + low- mass star forming regions —> ???







The proto-Sun: An ancient hot corino ?

#### • What is at the origin of the observed protostellar chemical diversity ?

—> Need to study large samples of Solar-type protostars

#### • Where do Solar-type protostars form ?

- Low-mass (<  $8M_{\odot}$ ) star forming region —> known majority of hot corinos and WCCC objects
- High- + low-mass star forming regions —> ???

#### • What is our Sun's birth environment ?







Solar Birth Environment

High- and low-mass star forming region with HII region nearby



#### Closest analogue: OMC-2/3



http://simbad.u-strasbg.fr/

## Can we find hot corinos and/or WCCC objects in OMC-2/3?



Mathilde Bouvier









Mathilde Bouvier 8

UNIVERSITÉ

Grenoble

Alpes

**IPAG** 



Avignon Thursday, 5<sup>th</sup> September

Mathilde Bouvier

Alpes

Grenoble



Region of emission of CCH and CH<sub>3</sub>OH







#### **Results from non-LTE LVG analysis**

1. Abundance ratio does not vary with position of the source

2. Gradient of abundance ratio through the filament probably caused by the illumination of the nearby HII region

12

Bouvier et al. in prep

IPAG

UNIVERSITÉ

Grenoble Alpes

#### Are we tracing the parental gas where the protostars are embedded ? YES



#### Comparison with survey in Perseus (Higuchi et al. 2018)



#### Adapted from Higuchi et al. 2018



Mathilde Bouvier 13





#### Comparison with survey in Perseus (Higuchi et al. 2018)



#### We are probably tracing the surrounding PDR !

#### [CCH]/[CH<sub>3</sub>OH] not reliable to determine the chemical nature of Solar-type protostars









- Need to choose other tracers for single-dish observations (PDR contamination)
- Impossible to find hot corinos and/or WCCC candidates with [CCH]/[CH<sub>3</sub>OH] in OMC-2/3
- We need interferometry to hopefully determine the chemical nature of protostars (Next step !)

Acknowledgements



## ERC DOC (Dawn of Organic Chemistry)

Main Collaborators: Ana López-Sepulcre, Cecilia Ceccarelli, Claudine Kahane, Muneaki Imai, Nami Sakai, Satoshi Yamamoto, Paul J. Dagdigian

**And the DOC Team:** Ali Al Eldhari, Eleonora Bianchi, Marta De Simone, Arezu Dehghanfar, Juan Enrique Romero, Cecile Favre, Bertrand Lefloch, Juan Ospina-Zamudio, Stefano Pantaleone, Fanny Vazart.







# Back up slides



non Thursday, 5<sup>th</sup> September





#### HH212-MM1: A hot corino in Orion but isolated



http://simbad.u-strasbg.fr/









#### **Evidences that Sun born in stellar cluster**

(Adams 2010, Pfaltzner et al. 2015)

## Sun's properties

- 17O/18O anomalies -> explained by intense FUV radiation fluxes
- High metallicity / enrichment in short-lived radionuclides (SLRs) such as <sup>60</sup>Fe and <sup>26</sup>Al -> origin at scale of molecular cloud and local massive star wind scale respectively
  - -> SN nearby?
- Abundance of <sup>60</sup>Fe and <sup>26</sup>Al -> large group of stars close to Sun

## **Constraint from Radiation field**

- Early solar nebula: sharp edge @ ~30au -> fly-by <10 Myr or photo-evaporation of disk ?
- Uranus and Neptune = ice giants -> photo-evaporation near 30 au require FUV flux of  $G_0 \sim \! 10^4$

## **Constraint from dynamics**

- Sedna has high eccentricity -> caused by close encounter ? Consistent with Sun beeing born in moderate-size cluster
- Tilt of Sun's rotation -> can be explained by star-disc interaction Host cluster of Sun: M67 ? Same chemical composition with stars but orbits different.







#### **Chemical diversity among Proto-stars: Explanation 1**









#### **Chemical diversity among Proto-stars: Explanation 2**

FUV photons



#### Only for uniform illumination



Thursday, 5<sup>th</sup> September

Mathilde Bouvier





#### **Gas density**







