UNRAVELLING SPECTRAL SIGNATURES AND PHOTOCHEMICAL PROCESSES OF PAHs

Annemieke Petrignani
University of Amsterdam

The Physics and Chemistry of the Interstellar Medium
Celebrating the first 40 years of Xander Tielens’ contribution to Science
Palais des Papes, Avignon, 3 Sep. 2019
OUTLINE

• The physics and chemistry of the ISM IS PAHs
• Electronic signatures of IS PAHs
• Photochemistry of PAHs as driver for D storage
THE PHYSICS AND CHEMISTRY OF IS PAHs

Cosmic Inventory?

Cosmic Chemistry?
The Physics of IS PAHs

How to identify IS PAHs?

- Limited correlation
- Fortitude of possible isomers
- Individual abundances too low?
- No match found (yet)
- But… lack of accurate validated predictions and accurate experiments under IS conditions

Diffuse Interstellar Bands

PAHs as carriers?

Cami et al.
HIGH-RESOLUTION ACTION SPECTROSCOPY UNDER INTERSTELLAR CONDITIONS

- Sample vapor and expansion gas
- Seeded supersonic expansion
- Mass selection
- Ionization chamber isomer selection
- TOF spectrometer
- Resonant Enhanced MultiPhoton Ionisation (REMPI)

IE ionization energy
S₀ excitation
S₁ excitation
Gas-Phase Electronic Spectra

Dibenzo[a,c]anthracene

S_1

27,438 cm$^{-1}$

Dibenzo[a,h]anthracene

S_1

Benzo(ghi)perylene

S_1

Anthanthrene

S_1

Roeterdink et al., *in preparation*

More results on poster of Hernán Velásquez Navarro
GAS-PHASE ELECTRONIC SPECTRA

Roeterdink et al., in preparation
Gas-Phase Electronic Spectra

Measured 23.879 cm⁻¹

TD DFT 21.320 cm⁻¹

TD DFT 25.312 cm⁻¹

~11% deviation of \(S_0 \rightarrow S_1 \) transitions

Roeterdink et al., *in preparation*
VALIDATE AND IMPROVE PREDICTIONS

• Cold high-resolution laboratory data of isolated PAHs
• TD DFT <15%

Roeterdink et al., *in preparation* (2)
VALIDATE AND IMPROVE PREDICTIONS

- Cold high-resolution laboratory data of isolated PAHs
- TD DFT <15%
- Predictions ~1%!

Roeterdink et al., *in preparation* (2)
The Photochemistry of IS PAHs

PAHs as Sink for Deuterium

- D/H ratio: Primordial ~26 ppm
 ISM ~7 to 22 ppm
- Predictions & observations
- Experimental data lacking
- Mechanism?

Could PAHs form a sink
Does photochemistry play a role

Buragohain et al. 2016
PHOTOLYSIS OF D⁺-ANTHRACENE IONS

- D-PAH⁺ yields H loss only
- H-PAD⁺ yields D loss mostly

UV

Wiersma et al. *in preparation*
PHOTO-INDUCED SCRAMBLING

Wiersma et al. *in preparation*

Castellanos et al. 2018

4.8 (4.9) eV

2.6 (2.7) eV
Photochemistry of IS PAHs
• Photolysis induces scrambling in D-PAH
• Driver for D storage
• Structure and size dependency?
• Re-interpretation of C-D band observations?

Electronic Signatures of IS PAHs
• Laboratory data under interstellar conditions
• Validated predictions within 1% accuracy
• Measuring DIB candidates in the lab!
ACKNOWLEDGEMENTS

Sandra Wiersma
Wim Roeterdink
Wybren Jan Buma

Alessandra Candian

Joost Bakker
Giel Berden
Jonathan Martens
Jos Oomens

Thank you Xander

NWO VIDI Grant
VENI Grant
VALIDATE AND IMPROVE PREDICTIONS

- Cold high-resolution laboratory data of isolated PAHs
- TD DFT <15%
- Predictions <1%!
- Structure!

Roeterdink et al., *in preparation* (2)
Photolysis of D+-Anthracene Ions

- D-PAH+ yields H loss only
- H-PAD+ yields D loss mostly
- IRMPD follows UV fragmentation

Wiersma et al. *in preparation*
PHOTOLYSIS OF ANTHRACENE

\[[H-C_{14}H_{10}]^+ \]

\[[D-C_{14}H_{10}]^+ \]

\[[H-C_{14}D_{10}]^+ \]