3D dust map of the Orion-Eridanus superbubble with Gaia DR2

Sara Rezaei Kh.

Chalmers (Sweden) – MPIA (Heidelberg)

Coryn Bailer-Jones, Juan D. Soler MPIA (Heidelberg)

2D vs. 3D

2D vs. 3D

Individual lines of sight

2D vs. 3D

Individual lines of sight Individual lines of sight + smoothing kernels

2D vs. 3D

Full 3D inference (neighbouring correlation)

Our 3D dust map

- Input: distances and extinction to stars
- 3D neighbouring correlation
- Distance and extinction uncertainty

Our 3D dust map

- Input: distances and extinction to stars
- 3D neighbouring correlation

Distance and extinction uncertainty

Gaia DR2

Data quality cut?

Photometric excess factor

Parallax_over_error < 0.2 Distance > 500 pc

Our 3D dust map

- Input: distances and extinction to stars
- 3D neighbouring correlation

Distance and extinction uncertainty

Robust 3D dust map without artefact

Our 3D dust map

- Input: distances and extinction to stars
- 3D neighbouring correlation
- Distance and extinction uncertainty

Robust 3D dust map without artefact

Distance to and structures of the molecular clouds; e.g. Orion

Method

Likelihood

Input: distances and extinctions to individual stars

- Divides each line of sight to small 1D cells

<u>Method</u>

Likelihood

Input: distances and extinctions to individual stars

- Divides each line of sight to small 1D cells
 - A_n: extinction to star n
 - $g_{n,j}$: length of the cell j to the star n
 - $\rho_{n,j}$: density in the corresponding cell

Gaussian Process Prior

Connects all cells in 3D space

3D spatial correlation matrix between all cells; the closer 2 points, the more correlated they are.

Gaussian Process Prior

Connects all cells in 3D space

3D spatial correlation matrix between all cells; the closer 2 points, the more correlated they are.

Posterior PDF

Finds the probability distribution function of the dust density at any arbitrary point; even along the line of sight without primary observation.

Takes into account both distance and extinction uncertainties

Rezaei Kh. et al. 2017, 2018b

Input data

- Gaia DR2 \rightarrow 3D position
- 2MASS + WISE → extinction (RJCE, Majewski+2011)

RJCE extinction

$$A_{K} = 0.918(H - [4.5\mu] - 0.08)$$

(Majewski et al. 2011)

Input data

- Gaia DR2 \rightarrow 3D position
- 2MASS + WISE \rightarrow extinction (RJCE, Majewski+2011)

• Final selection on the CMD

Rezaei Kh. et al. 2018a

Results / Orion

Credit: ESA / Planck collaboration

Results / Orion A

Credit: ESA / Planck collaboration

Results / ĸ Orionis

Credit: ESA / Planck collaboration

Rezaei Kh. et al. in prep.

Distance (pc)

Rezaei Kh. et al. in prep.

Distance (pc)

- Robust 3D dust mapping technique without artefacts
 - Study ISM substructures

- Robust 3D dust mapping technique without artefacts
 - Study ISM substructures
- Foreground cloud to Orion A at ~350 pc

- Robust 3D dust mapping technique without artefacts
 - Study ISM substructures
- Foreground cloud to Orion A at ~350 pc
- Kappa Orionis distance at 400 pc in contrast to 200 pc Hipparcos parallax

- Robust 3D dust mapping technique without artefacts
 - Study ISM substructures
- Foreground cloud to Orion A at ~350 pc
- Kappa Orionis distance at 400 pc in contrast to 200 pc Hipparcos parallax
- Kappa Orionis ring connected to the tail of Orion A

Schlegel, Finkbeiner, and Davis (SFD, 1998)

Schlegel, Finkbeiner, and Davis

Planck Collaboration

3D maps

