Carbon Chemistry in evolved stars

José Cernicharo et al. jose.cernicharo@csic.es

IFF-CSIC

NANOCOSMOS Synergy ERC grant: José Cernicharo, IFF-CSIC, Spain Christine Joblin, IRAP, CNRS, France José A. Martin-Gago, ICMM, CSIC, Spain

nanocosmos

European Research Council Established by the European Commission Red giant AGB star

If C/O<1 all C in CO

- R* increases by a factor ~1000

IF C/O>1 all O in CO

- L_{*} increases by a factor ~10,000

- T* decreases from ~6000 K to ~2000-3000 K

Circumstellar envelopes around AGB stars

AGB stars lose mass through an isotropic wind

producing an extended circumstellar envelope of gas and dust

20'

Yang et al., 2004, A&A, 414, 1049; see also Yamamura et al., 1997, Ap&SS, 255,351 See Chan and Kowk 1990, A&A, 237, 354, for an analysis of the LRS-IRAS spectrum of carbon stars. β–SiC found in presolar meteorites !!! © 2017. The American Astronomical Society. All rights reserved.

Nucleation of Small Silicon Carbide Dust Clusters in AGB Stars

David Gobrecht^{1,4}, Sergio Cristallo¹, Luciano Piersanti¹, and Stefan T. Bromley^{2,3} B 2.29 (1.98)A 0.00 (0.00)A 0.00 (0.03) B 0.39 (0.26) Si-C-Si D 2.77 (2.20) 0.69 (0.00) C Figure 3. Transition states of Si₂C₂ clusters. Figure 1. The two stable SiC2 clusters and the Si2C ground state with relative energies (in eV). A 0.00 (0.48) B 0.35 (0.84) B 2.10 A 0.00 (0.00)(1.00)D (0.00)C 0.84 (0.96)Figure 4. The most stable Si3C3 clusters and relative energies (in eV). С 4.40 D 5.03 (1.34)(3.11)Figure 21. Stable isomers of Si16C16 clusters.

Proposed nucleation path $Si_nC_n+SiC=>Si_{n+1}C_{n+1}$

Alternative paths $Si_nC_m+SiC_2/Si_2C=Si_{n+1}C_{m+2}/Si_{m+2}C_{n+1}$

0.88

Figure 5. Transition states of Si₃C₃ clusters.

And why not $Si_nC_m + Si \text{ or } + C \text{ or } + C_2 \text{ or } + Si_n \text{ or } + C_n$???

Interest of IRC +10216

Prototype of mass-lossing C-rich AGB star

- Possibility to produce detailed studies of mass loss process in AGB stars and dust formation
- Most tan 50% of known molecules in space have been detected this circumstellar envelope (all carbon radicals, all anions, all metal-bearing species –halides and cyanides-)
- Excellent laboratory to test chemical models

To study the dust component we need infrared observations to characterize its physical properties and its chemical composition (from spectral features)

Dust is formed from atoms and molecules: A complete characterrization of the molecular content of the star and its circumstellar envelope is needed

Astrophysical observations in the infrared to characterize molecules without permanent dipole moment : C_2H_2 , CH_4 , SiH_4 , C_2H_6 , C_2H_4 ,....

Astrophysical observations in the radio, millimeter and submillimeter domains with single dishes and interferometers to study the gas composition of the circumstellar envelope : CO, HCN, C_nH radicals, HC_nN, SiO, SiS, Si₂C, SiC₂,....

Laboratory astrophysics experiments to simulate, at the best we can, the formation of dust

THE IR OBSERVATIONS

- CARMENES Spectrometer, resolution 82000, coverage 0.55-1.7 μm.
 Very well adapted to NANOSCOSMOS goals. A few stars observed
- TEXES/EXES spectrometers 5-20 μm, resolution 75000 (one/two objects)
- VLT/CRIRES o ISHEL/IRTF, 1-5 μm, resolution 100000 (2017 IRC done) (one/two objects)

Observations of C_2H_2 and HCN with TEXES at the IRTF

PhD of J.Pablo Fonfría (Fonfría et al., 2008, ApJ)

TEXES::Lacy et al., 2002, PASP, 114, 153

720-900 cm⁻¹ 11.1-13.9 μm

Spectral resolution 75000 4 km/s (0.008 cm⁻¹)

C₄H₂ in IRC+10216 (Fonfría et al., 2017)

C_2H_4

Fonfria et al. (2017, ApJ, 835, 196)

Formed at distances ~20R*

FIG. 2.— Ro-vibrational diagram of the observed C₂H₄ lines. The lines are separated into two different groups: warm lines (blue dots) and hot lines (red triangles). The warm lines are those involving lower ro-vibrational levels with energies below 177 K. The hot lines involve lower levels with higher energies. These groups of lines were linearly fitted separately following Eq. 2 to derive their rotational temperatures, $T_{\rm rot}$, and their column densities, $N_{\rm col}$.

Ethylene in IRC+10216

POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN CARBON-RICH STELLAR ENVELOPES

ISABELLE CHERCHNEFF,^{1,2} JOHN R. BARKER,^{1,4} AND ALEXANDER G. G. M. TIELENS³ Received 1992 January 20; accepted 1992 June 15

Chemical network based on Frenklach and Feigelson (1989, ApJ, 341, 372) with some modifications. Uses the vynilidene cumulenic isomer of acetylene

 (H_2C_2) has a very short live; it is not a good precursor)

Analyzing the line profiles for the presence of shocks

THE ASTROPHYSICAL JOURNAL, 546:L123-L126, 2001 January 10

INFRARED SPACE OBSERVATORY'S DISCOVERY OF C4H2, C6H2, AND BENZENE IN CRL 618

José Cernicharo,^{1,2} Ana M. Heras,³ A. G. G. M. Tielens,⁴ Juan R. Pardo,^{1,5} Fabrice Herpin,¹ Michel Guélin,⁶ and L. B. F. M. Waters⁷

THE ASTROPHYSICAL JOURNAL, 546:L127-L130, 2001 January 10

METHYLPOLYYNES AND SMALL HYDROCARBONS IN CRL 618

José Cernicharo,^{1,2} Ana M. Heras,³ Juan R. Pardo,^{1,4} A. G. G. M. Tielens,⁵ Michel Guélin,⁶ E. Dartois,⁶ R. Neri,⁶ and L. B. F. M. Waters⁷

The chemistry of carbon in AGBs outside thermodynamical equilibrium

- Key termolecular reactions (from atoms to diatomics A+B+M=>AB+M): C + C + M =>C₂($^{1}\Sigma$)/C₂($^{3}\Pi$); τ (C₂($^{3}\Pi$))=120 µs; Energy(C₂($^{3}\Pi$))=716 cm⁻¹
- $C_2(^{1}\Sigma)+M = C_2(^{3}\Pi)$ (the triplet state is detected in the photosphere of all carbon stars). At 2000 K $C_2(^{3}\Pi)/C_2(^{1}\Sigma)\sim 5$.
- C₂+C+M=C₃ and so on (C_n+C_m+M) but it takes time to grow and clusters could react with other species (H, H₂, metals) to form hydrocarbons (mainly acetylene, but also C_nH_m species). Time becomes a real limitation for the growth of clusters.
- Reactions involving H₂ and radicals can be faster than 3-body reactions at 1000-1500 K for n(H₂)<10¹⁰ cm⁻³ (H₂+C₂ (¹Σ)=>CCH + H; H₂+CCH=>C₂H₂+H). They have to be included in any reasonable model. Moreover, H₂ in v=1 is highly abundant (much more than any other element or molecule). These reactions become also crucial in the protoplanetary nebula phase where photochemistry is the driving mechanism for molecular growth (Cernicharo 2004, ApJ, 608, L41)

The chemistry of carbon in AGBs outside thermodynamical equilibrium

- The problem of bimolecular reactions of SMALL carbon clusters: C_n with n even have triplet states, but with n odd they have singlet states. Hence the radiative association C_n+C_{n+1} =C_{2n+1} is spin forbidden !!!! (for n < 9-10 when clusters become ring-shaped)
- In principle C₂+C₂ = C₃ + C(³P) is spin forbidden if the two C₂ are in the singlet state. However, the reaction is spin allowed if at least one of them is in the triplet state.
- Hence, C_3 could be formed if C_2 is not consumed by reactions with H_2 and $C_2(^3\Pi)$ is available.
- C₂(³Π) reacts slowly with H₂ but C₂(¹Σ) reacts fast if T is high: The excitation state of molecules has to be included in our chemical kinetic models !!! (at least for sizes below ~8-10 atoms)

The central source (0.6")

Cernicharo et al., 2013, ApJ,778, L25

HCN, HNC, SiO, SiS, CS, SiC₂

HCN in all vib levels up to 16000 K (11000 cm⁻¹)

H¹³CN up to 8000 K

H¹⁵NC up to 5000 K

HNC up to vib levels ~5000 cm⁻¹

Hundreds of U lines

SiS up to v=12

 $\nu_{2} + \nu_{3}$ **HCN** $2\nu_2 + \nu_3$ $\nu_1 + \nu_2$ е $2\nu_{2}+\nu_{3}$ Ω $\nu_1 + 2\nu_2$ 0.5 е $5\nu_{2}+\nu_{3}$ е U 0 265250 265300 265350 265400 MADEX ::: Uij for 77 diatomic molecules. 243 vibrational levels of HCN...... by December 1st 6001 spectral entries

Rotational spectroscopy of HOT HCN is really needed. Work on collaboration with J. Pearson (JPL)

Spatial distribution of vibrationally excited lines around IRC+10216 All emission is confined in a radius of 20 R_{*}

Figure 1: Observed spatial distribution of some highly excited vibrational lines of HCN (a $\Delta J=0$ line with J=49 arising from $2v_2^2$) and Si³⁴S v=1. The red circle shows a region with a radius of 0.4", i.e., 20 stellar radii. The emission is confined to the zone inside this circle. The synthetic ALMA beam is 0.39"x0.36" for HCN and 0.37"x0.35" for Si³⁴S (it is indicated at the right top corner of each panel). By observing several vibrational lines of the same species it will be possible to derive the kinetic temperature of the gas and the molecular abundances. From their linewidths as a function of the position, the velocity field in the dust formation zone will also be derived. Science goal 1 will provide a map of this region of 40x40 pixels of 0.02".

The effect of shocks

Fonfría, Cherchneff + in prep

0.02" model with shocks 0.6" model with shocks 0.02" models no-shocks 0.6" model no-shocks v=0v=2 v=3 v=4v=11000 ×3.5 ×10 ×12 $T_{\rm mb}$ (K) ×15 $\phi = 0.0$ 0 -1000uluuluulu ببليتنابينات adaulaala. -20 0 20 -20020 -20020 -20020 -20020 -20 0 20 ntensity (Jy beam⁻¹) 3 0.6 0.3 -0.152 0.4 0.2 0.1 0.2 0.1 0.05 0 0 0 -20 0 -20-400 -40-20-40 0 -20-40 $v_{LSR} (km \cdot s^{-1})$

> ALMA observations 0.6" resolution Velilla-Prieto +, 2015, 805, L13 0.02" observations are coming !!!

Spatial distribution of several molecular species at the systemic velocity of the star

ALL DATA (84-116 GHz) MERGED WITH SHORT SPACINGS

HNC compact, extended and short spacings

Each molecule provides a different 20 information depending of its excitation 0 conditions and its chemistry -20

Massalkhi +, 2019, A&A, 628, A62

Fig. 8: Fractional abundances f_0 derived for CS (left panel), SiO (middle panel), and SiS (right panel) are plotted as a function of the envelope density proxy \dot{M}/V_{exp} for the 25 C-rich envelopes studied here. Blue downward arrows represent upper limits to f_0 .

Massalkhi +, 2017, A&A, 611, A29

SiC₂ as an important Component of SiC-dust

Velilla-Prieto +, 2019, A&A, in press

Fig. 7. Azimuthal average of brightness distribution of four main isotopologue lines detected of CS (yellow line), SiS (green and red lines), and SiO (blue line). The flux density has been converted to brightness temperature, and the vertical scale is shown in logarithmic scale to improve the visualisation of the plot. The uncertainty intervals (3σ) are also shown in each curve with similar colours. The spatial scale is shown in units of the stellar radius and we also included an additional axis showing the angular scale in the bottom box. The equivalence between both scales is $1.R_{\sim}=0.^{\circ}$ (19 (Ridgway & Keady 1988). On each box, the 5σ -level detection limit is shown in grey. We also indicate the maximum value of the brightness temperature for each distribution, which in all cases corresponds to the central pixel. We marked the kevels in which the temperature decreased by half and by a factor of e of its maximum value. The results from the radiative transfer models (see Section 4) are shown as dashed black lines in each box.

After 20 R* the abundances of SiS, SiO, CS do not suffer significant changes until the photodissociation region

Gas and dust becomes well decoupled at 20 R*

To get rid of the rich azimuthal structure and study only the radial behavior, we make an azimuth average of the brightness distributions

(7) Hydrocarbon radicals peak at the same radius Cyanides show more disperse distributions: HC₃N appears earlier and CN extends farther

(Chemical + Excitation - collisional and infrared excitation-) Model vs Observations

Concluding remark:

The good agreement between model and observations validates this scenario of carbon chain growth In the external layers of the envelope (around 700 Stellar Radii)

Polyyne growth is driven by reactions involving C₂H and C₄H radicals CN produced in the photodissociation of HCN Cyanopolyyne growth is driven by reactions involving CN and C₃N radicals The route $HC_3N \rightarrow HC_5N \rightarrow HC_7N \rightarrow ...$ does not happen Cyanopolyyne growth is intimately related to polyyne growth

The kinetics of most of these processes have been studied in the laboratory in recent years: photodissociation cross section and low-temperature rate constants of chemical reactions. What about the C_nH₂ species ? They lack of permanent dipole moment, hence, only detectable in the IR

Conclusions : Astrophysical observations

- Carbon clusters detected in the external layers of the envelope
- C₂ and C₃ detected in the near and mid-IR in, and around, the photosphere
- C_nH radicals up to C₈H detected in the external layers of the envelope. Chemistry well understood (photochemistry)
- Cyanopolyynes and polyacetylenes are detected in the mid and external layers of the envelope (photochemistry)
- All carbon anions, C_nH⁻, are formed in the external layers (electron attachment to the radicals C_nH)
- Dust is formed in the photosphere and growth in a region of 20 stellar radii
- The growth of Carbon clusters and dust seeds could occur in the photosphere, and around, but is probably kinetically limited by energetics and spin forbidden reactions.
- LABORATORY SIMULATIONS NEEDED TO UNDERSTAND DUST FORMATION :: NANOCOSMOS

NANOCOSMOS

An ERC synergy project to understand how dust is formed

ablished by the European Commiss

NANOCOSMOS A complementary and multidisciplinary team

Ultra-high vacuum Technologies NanoSciences

Laboratory Astrophysics Carbonaceous macromolecules & nanograins Photodissociation regions

> Radioastronomy Molecular spectroscopy Evolved Stars

NANOCOSMOS

CAB-MADRID

MODELLING

Stars, as factories of molecular complexity and dust Understanding formation of dust in space Impact on our vision of the origin of planets and life

EXPERIMENTS

New scientific approaches through synergy

The StarDust machine: current status September 2017

Sputtering of a graphite target with Ar⁺ + H₂ injection in the aggregation zone

$n(e^{-}) = n(Ar^{+}) \sim 10^{-4} n(Ar)$

Figure 1.4 The magnetron sputter head in more detail. A cylindrical magnetic field is used. Charge production and surface erosion are maximal in the region where the magnetic field is parallel to the surface, as indicated by the two inserts. Note that the argon gas is introduced in two different regions, (i) around the source and (ii) it is blown directly into the region where sputtering is maximal. The intensity and mass distribution of clusters can be optimized, by playing with these two gas flows. The sputter head has to be water-cooled.

Gas-Phase Synthesis of Nanoparticles. Edited by Yves Huttel (2017) Wiley-VCH.

Graphite target

C₂ and CH are rapidly consumed: they are captured to form new species

A zoo of clusters and molecules

- Coverage 40%
- Different clases of atomicscale adsorbates
 - Individual clusters
 - Self-organized Short chains
 - Self-organized Long chains
 - Ring-shaped clusters

Nano-sized amorphous grains

Received 24 Jul 2013 | Accepted 3 Dec 2013 | Published 21 Jan 2014

DOI: 10.1038/ncomms4054

Graphene etching on SiC grains as a path to interstellar polycyclic aromatic hydrocarbons formation

P. Merino¹, M. Švec², J.I. Martinez³, P. Jelinek², P. Lacovig⁴, M. Dalmiglio⁴, S. Lizzit⁴, P. Soukiassian^{5,6}, J. Cernicharo¹ & J.A. Martin-Gago^{1,3}

Polycyclic aromatic hydrocarbons as well as other organic molecules appear among the mo abundant observed species in interstellar space and are key molecules to understanding th prebiotic roots of life. However, their existence and abundance in space remain a puzzle. Here we present a new top-down route to form polycyclic aromatic hydrocarbons in large quantities in space. We show that aromatic species can be efficiently formed on the graphitized surface of the abundant silicon carbide stardust on exposure to atomic hydrogen under pressure and temperature conditions analogous to those of the interstellar medium. To this aim, we mimic the circumstellar environment using ultra-high vacuum chambers and investigate the SiC surface by *in situ* advanced characterization techniques combined with first-principles molecular dynamics calculations. These results suggest that top-down routes are crucial to astrochemistry to explain the abundance of organic species and to uncover the origin of unidentified infrared emission features from advanced observations.

Cite this: Phys. Chem. Chem. Phys., 2016, 18, 3489

Laboratory astrochemistry: catalytic conversion of acetylene to polycyclic aromatic hydrocarbons over SiC grains

T. Q. Zhao,^a Q. Li,^a B. S. Liu,*^{ab} R. K. E. Gover,^c P. J. Sarre^c and A. S.-C. Cheung*^a

Fig. 5 Comparison of PAH formation on β -SiC and α -SiC at different temperatures. The numerical values are the molecular weight of the PAHs formed.

Fig. 3 TOF-MS signals from acetylene conversion over β -SiC as a function of temperature in the mass range (a) 0–80 and (b) 75–275.

Astro-summary

Aliphatic nature of carbonaceous cosmic dust analogs produced mimicking dust nucleation zones

The MICS of the Stardust machine present conditions close to the dust formation zone of AGBs (density of C and H_2 , and H)

Our experiments demonstrate that highly saturated hydrocarbons (alkane and aliphatic) can be efficiently formed in AGB stars and could condensate on grains. These alkane species are "invisible" in rotational spectroscopy. In IR spectroscopy they will be difficult to detect in astro objects due to the large partition functions of these species.

So far only C_2 , C_3 , C_4 , C_5 , C_2H_2 , C_4H_2 , C_2H_4 , NH_3 and SiH_4 , have been detected in the infrared towards AGBs (IRC+10216). C_2H_6 searched but only upper limits have been obtained.

We have no found PAHs, just small traces. However, they could be formed through H and C_2H_2 reaction over SiC-dust surfaces (among many other possible paths).

 C_nH radicals can react with H_2 with very low barriers: $C_nH + H_2 => C_nH_3$

Acknowledgments: The STARDUST TEAM + NANOCOSMOS

erc SYNERGY nanocosmos

José Cernicharo

Christine Joblin

