THE PHYSICS AND CHEMISTRY

Alexey Potapov Laboratory Astrophysics Group of the Max Planck Institute for Astronomy

ON THE SURFACE OF COSMIC DUST GRAINS

The whole sky (by eyes)

The whole sky (by eyes)

"a lot of stars and black holes" (Jules Verne)

Molecular clouds

......

Credit: Lund observatory

HRTEM image of silicate grains (real surface area is unknown) Inset: carbon grains on a KBr substrate (nominal surface area is 1 cm²)

High porosity Large surface

Cold condensation of dust in dense clouds

Thermal desorption of H₂O ice

Potapov A. et al., *ApJ*, 2018, 865, 58

Thermal desorption of H₂O ice

 H_2O (130 nm, 400 ML): desorption order = 0 – multilayer desorption

 H_2O (130 nm, 400 ML) + carbon grains: desorption order = 1 – monolayer desorption

Correction factor of 400!

<u>Ice coverage of dust grains in the ISM:</u> 10^{18} molecule cm⁻² – 1000 ML / 400 = 2.5 ML

HRTEM image of silicate grains (real surface area is unknown) Inset: carbon grains on a KBr substrate (nominal surface area is 1 cm²)

Cosmic dust grains

Huge number of studies

from simple molecules to amino acids

Role of dust grains in the chemistry on their surfaces

- <u>Direct participation</u> of functional groups and atoms in surface reactions

Threefold catalytic effect

- A place where molecules can rapidly diffuse and react
- A third body to dissipate the energy released in exothermic bond formations
- Lowering the activation barriers of reactions

A handful of studies

 \underline{CO}_2 in H_2O ice covering hydrogenated carbon grains by ion irradiation (Mennella et al., 2004)

<u>CO and CO</u>₂ in H₂O ice covering hydrogenated carbon grains by <u>UV irradiation (Mennella et al., 2006)</u>

 \underline{CO}_2 in \underline{O}_2 ice covering atomic carbon foils by \underline{UV} irradiation (Fulvio et al., 2012)

 \underline{CO}_2 in H_2O ice covering atomic carbon foils by proton irradiation (Raut et al., 2012)

<u>CO and CO</u>₂ in H₂O ice covering hydrogenated carbon grains by proton irradiation (Sabri et al., 2015)

<u>CO and CO₂ in H₂O ice covering graphite films by UV irradiation (Shi et al., 2015)</u>

Formation of CO and CO₂

MONARIS, Paris

LabAstro, Jena

91 rampe d'injection de H₂ cryostat avec circuit rampe d'injection de CO fermé d'hélium rampe d'injection de H₂O rampe d'injection commune à CO et H₂O sondes de pression source radicalaire débitmètre enceinte o vannes vanne C égulatr piège N/ 0 pompages primaires et secondaires réservoir vers pompe primaire 2 + vers pompe primaire 1

Amorphous hydrogenated fullerene-like carbon grains

Sample - fixed on a copper mirror at 10 K High vacuum chamber (10⁻⁹ mbar) Bombardment – 30 minutes, 1.8×10²⁰ atoms cm⁻²

Difference IR spectrum before and after O/H bombardment of carbon grains

A new route of molecules formation in the ISM: grain surface processes

Potapov A., ..., Krim L., *ApJ*, 2017, 846, 131

Some studies

 \underline{H}_2 on crystalline silicate films (Pirronello et al., 1997) $\underline{H}_2\underline{O}$ on amorphous silicate films (Jing et al., 2011) $\underline{H}_2\underline{O}$ on amorphous silicate films (He and Vidali, 2014) \underline{H}_2 on amorphous silicate grains (Gavilan et al., 2014) ...

Formation of H_2 and H_2O

$\underline{CO_2 + 2NH_3 \rightarrow NH_4^{\pm}NH_2COO^{\pm}}$

IR spectra taken after the deposition of a $NH_3:CO_2$ 4:1 mixture on carbon grains at 15 K and after 4 hours of the reaction at 80 K

> Time dependences of the $NH_4^+NH_2COO^-$ column density evolved from isothermal kinetic experiments at 80 K

Dependence of the reaction rate coefficients of the $CO_2 + 2NH_3 \rightarrow NH_4^+NH_2COO^+$ reaction on the ice thickness for various surfaces

Dependence of the reaction rate coefficients of the $CO_2 + 2NH_3 \rightarrow NH_4^+NH_2COO^+$ reaction on the ice thickness for various surfaces

Potapov A., Theule P., et al., *ApJL*, 2019, 878, L20

- An increased diffusion rate of species
- A formation of an intermediate weakly bound CO₂–NH₃ complex that helps to overcome the reaction barrier
- Lowering of the activation barrier of the reaction

- An increased diffusion rate of species?
- A formation of an intermediate weakly bound CO₂–NH₃ complex that helps to overcome the reaction barrier

Lowering of the activation barrier of the reaction

Role of dust grains in the chemistry on their surfaces

Trapping of water in silicates

Trapping of water in silicates

Potapov A. et al., ApJ, 2018, 861, 84 and to be submitted

Trapping of water in silicates

Trapped water can survive the transition from cold star-forming regions to protoplanetary disks and stay in silicates in the terrestrial planet zone

............