

[CII] Optical Depth and Self-Absorption in M17SW

Cristian Guevara

I. Physikalisches Institut – Universität zu Köln

With Jürgen Stuzki, Volker Ossenkopf-Okada, Robert Simon, Juan Pablo Pérez-Beaupuits, Henrik Beuther, Simon Bihr, Ronan Higgins, Urs Graf and Rolf Güsten

Cristian Guevara, Ph1, Uni zu Köln Sept 3 2019

Sept 3 2019 Page 1

CII] Optical Depth and Self-Absorption in M17SW

[¹³CII] hyper-fine structure line

- C⁺ has only two fine structure levels in the ground state with an energy difference of 91.25 K. The ionization potential of carbon is 11.2 eV.
- Emission is produced by collisional excitation followed by radiative decay at 1.9 THz.
- The hyper-fine structure of the ¹³C⁺ isotope due to the extra neutron, it is splitted into three hfs-components.

Cristian Guevara, Ph1, Uni zu Köln Sept 3 2019

Page 2

M17SW

- It is considered one of the brightest and most massive star forming regions in the Galaxy, located at 1.9 kpc of distance.
- The cloud is illuminated by a cluster (>100) of OB stars.
- M17SW presents an edge-on geometry, very well suited for studying the PDR structure.

M17 8 μ m Spitzer map and [CI] ${}^{3}P_{1}$ - ${}^{3}P_{0}$ NANTEN2/SMART integrated intensity map in contours

Observations

- **Observations were done using the SOFIA/upGREAT 7x2 pixels** array receiver during the June 2016 campaign.
 - The array was centered around the [CII] peak.
- Deep integration (~30 min t_{on}) with high S/N ~ 300 for [¹²CII] and •
 - ~ 7 for [13 CII] F=1-0 with a rms of 0.2 K.

Page 4

Zeroth Order Analysis

- As a first approximation, it was assumed that the source has a single homogeneous layer with the same excitation temperature (T_{ex}) for both isotopes.
 - [¹³CII] was scaled up assuming the elemental abundance ratio ¹²C/¹³C of 40.

Sept 3 2019 Page 5

Zeroth Order Analysis

- [¹³CII] overshoots the [¹²CII] emission at the line center and matches at the line wings.
- [¹²CII] line profiles shows absorption dips not present in [¹³CII].

[CII] Optical Depth and Self-Absorption in M17SW

CII] Optical Depth and Self-Absorption in M17SW

Sept 3 2019 Page 7

Zeroth Order Analysis

- The emission is optically thick in the line center with a τ between 4 and 8.
- The [¹²CII]/[¹³CII] ratios are between 15 and 30, well beloe the 40 assumed before.

Multi-component Analysis

- The [¹²CII] spectra with complex velocity structure and absorption dips shows that the single layer assumption is insufficient.
- The objective is to explain the [¹²CII] and [¹³CII] line profile by a composition of multiple Gaussians components.
- The model contains 2 layers, a background emission layer and a foreground absorption layer.

Cristian Guevara, Ph1, Uni zu Köln

CII] Optical Depth and Self-Absorption in M17SW

Credit: getdrawings.com, pngtree.com, iconsplace.com

- **Multi-component Analysis**
- The plan is to use the radiative transfer equation to derive the excitation temperature (T_{ex}) , [¹²CII] column density $(N_{12} (CII))$, the velocity center (v_{LSR}) and the FWHM velocity width (Δv_{LSR}) .
- Three basic assumptions were done:
 - ◆ T_{ex} is the same for [¹²CII] and [¹³CII].
 - [¹³CII] is optically thin.
 - If [¹²CII] does not have a visible [¹³CII] counterpart above noise level, [¹²CII] emission is not affected by selfabsorption effects.

Multi-component Analysis

M17SW fitted parameters

	Background	Foreground
Excitation temperature T_{ex}	180-250 K	20 - 45 K
Column Density (N(CII))	3x10 ¹⁸ – 9x10 ¹⁸ cm ⁻²	4x10 ¹⁷ – 3x10 ¹⁸ cm ⁻²
Equivalent visual extinction (Av)	12 - 41 mag	2 – 13 mag

Ph1, Uni zu Köln Sept 3 2019 Page 10

Multi-component Analysis

- The background is composed by high temperature broad emission components with extremely high column density.
- The foreground is composed by low temperature narrow absorption notches with high column density.

[¹³CII] integrated intensity map

Cristian Guevara, Ph1, Uni zu Köln Sept 3 2019

Page 12

[¹²CII] and [¹³CII] vs [OI] emission

[CII] Optical Depth and Self-Absorption in M17SW

Summary

SFB 956 Cologne I Bonn

- The observations and analysis confirm the long standing suspicion that the [¹²CII] emission is heavily affected by self-absorption effects and high optical depth.
- The absorbing dips change the profile of the [CII] line, mimicking separate velocity components.
- The high column densities of the warmer background are difficult to explain in the present PDR-model context and ISM phases.
- The large A_v derived here can be interpreted as several layers of C⁺ stacked on top of the other. This situation could be enhanced by fractal and clumply material.
- For the foreground, the nature of the material is much more puzzling. The [CII] is ionized, cold lower density material. It is not diffuse gas.

Thank you for your attention

[CII] Optical Depth and Self-Absorption in M17SW

M43 τ and abundance ratio

- The ¹²C/¹³C ratio assumed is 67.
- The optical depth for the peak positions ~2.

Horsehead PDR τ and abundance ratio

- The ¹²C/¹³C ratio assumed is 67.
- The optical depth for the peak positions ~1.8

Monoceros R2 τ and abundance ratio

- The ¹²C/¹³C ratio assumed is 67.
- The optical depth for the peak positions ~7.

[¹²CII] N(CII) integrated intensity

For the four sources, the [¹²CII] column density derived from the scaled-up optically thin [¹³CII] was estimated, as well as the column density directly from the [¹²CII].

	[¹³ CII]				Optically thin [¹² CII]			Ratio
Positions	[¹³ CII] Int.	$N_{\min}([^{13}\text{CII}])$	$N_{\min}([CII])^a$	$A_{\rm v,min}{}^{\rm b}$	[¹² CII] Int.	$N_{\min}([CII])^{c}$	$A_{\rm v,min}{}^{\rm d}$	$\frac{A_{\rm v,min}([^{13}CII])^{\rm b}}{A_{\rm v,min}([^{12}CII])^{\rm d}}$
	Intensity		[¹³ CII]	[13CII]	Intensity	[¹² CII]	[¹² CII]	11v,mm ([011])
	(K km/s)	(cm^{-2})	(cm^{-2})	(mag.)	(K km/s)	(cm^{-2})	(mag.)	
M43 0	5.5	2.5E16	1.7E18	7.4	283.1	1.3E18	5.6	1.3
M43 1	4.3	1.9E16	1.3E18	5.7	249.2	1.1E18	4.9	1.2
M43 2	2.6	1.2E16	7.7E17	3.4	172.2	7.7E17	3.4	1.0
M43 3	2.6	1.1E16	7.6E17	3.4	134.0	6.0E17	2.6	1.3
M43 4	5.5	2.5E16	1.7E18	7.4	270.1	1.2E18	5.3	1.4
M43 5	3.7	1.6E16	1.1E18	4.9	227.4	1.0E18	4.5	1.1
M43 6	4.1	1.8E16	1.2E18	5.4	237.9	1.1E18	4.7	1.1
HOR 0	1.2	5.3E15	3.6E17	1.6	39.6	1.8E17	0.8	2.0
HOR 1	0.7	3.1E15	2.1E17	0.9	11.2	5.0E16	0.2	4.2
HOR 2	1.4	6.1E15	4.1E17	1.8	26.6	1.2E17	0.5	3.4
HOR 3	1.0	4.7E15	3.1E17	1.4	25.7	1.1E17	0.5	2.7
HOR 4	0.3	1.2E15	8.4E17	0.4	14.8	6.6E16	0.3	1.3
HOR 5	0.9	3.9E15	2.6E17	1.2	14.7	6.5E16	0.3	4.0
HOR 6	1.6	7.0E15	4.7E17	2.1	41.5	1.9E17	0.8	2.5
MonR2 1	12.2	5.5E16	3.7E18	16.3	410.8	1.8E18	8.1	2.0
MonR2 2	11.4	5.1E16	3.4E18	15.2	477.0	2.1E18	9.5	1.6
M17SW 0	41.6	1.9E17	7.4E18	33.0	657.2	2.9E18	13.1	2.5
M17SW 1	39.1	1.7E17	7.0E18	31.1	460.1	2.1E18	9.1	3.4
M17SW 2	26.9	1.2E17	4.8E18	21.3	458.1	2.0E18	9.1	2.3
M17SW 3	16.5	7.4E16	2.9E18	13.1	489.9	2.2E18	9.7	1.3
M17SW 4	45.1	2.0E17	8.1E18	35.9	722.7	3.2E18	14.4	2.5
M17SW 5	14.1	6.3E16	2.5E18	11.2	521.7	2.3E18	10.4	1.1
M17SW 6	34.3	1.5E17	6.1E18	27.3	617.7	2.8E18	12.3	2.2

^a [¹²CII] column density derived from the scaled-up [¹³CII] column density.
^b [¹²CII] equivalent visual extinction derived from the scaled-up [¹³CII] column density.

^c [¹²CII] column density derived directly from the [¹²CII] integrated intensity assuming optically thin regime.

^d [¹²CII] equivalent visual extinction derived directly from the [¹²CII] integrated intensity assuming optically thin regime.

SFB 956

Cristian Guevara. Ph1, Uni zu Köln

Sept 3 2019 Page 19

[¹²CII]/[¹³CII] abundance ratio

- The analysis highly depend on the assumed ratio, it could be possible to derive the ratio directly from the wing emission with high S/N.
- For M17Sw, 6 or 7 positions were averaged to analyze the ratio.

M17SW average spectra